Normalizers of subsystem subgroups in finite groups of Lie type
Algebra i logika, Tome 47 (2008) no. 1, pp. 3-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite groups of Lie type form the greater part of known finite simple groups. An important class of subgroups of finite groups of Lie type are so-called reductive subgroups of maximal rank. These arise naturally as Levi factors of parabolic groups and as centralizers of semisimple elements, and also as subgroups with maximal tori. Moreover, reductive groups of maximal rank play an important part in inductive studies of subgroup structure of finite groups of Lie type. Yet a number of vital questions dealing in the internal structure of such subgroups are still not settled. In particular, we know which quasisimple groups may appear as central multipliers in the semisimple part of any reductive group of maximal rank, but we do not know how normalizers of those quasisimple groups are structured. The present paper is devoted to tackling this problem.
Keywords: finite simple group of Lie type, reductive subgroup of maximal rank, subsystem subgroup.
@article{AL_2008_47_1_a0,
     author = {E. P. Vdovin and A. A. Gal't},
     title = {Normalizers of subsystem subgroups in finite groups of {Lie} type},
     journal = {Algebra i logika},
     pages = {3--30},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_1_a0/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - A. A. Gal't
TI  - Normalizers of subsystem subgroups in finite groups of Lie type
JO  - Algebra i logika
PY  - 2008
SP  - 3
EP  - 30
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_1_a0/
LA  - ru
ID  - AL_2008_47_1_a0
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A A. A. Gal't
%T Normalizers of subsystem subgroups in finite groups of Lie type
%J Algebra i logika
%D 2008
%P 3-30
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_1_a0/
%G ru
%F AL_2008_47_1_a0
E. P. Vdovin; A. A. Gal't. Normalizers of subsystem subgroups in finite groups of Lie type. Algebra i logika, Tome 47 (2008) no. 1, pp. 3-30. http://geodesic.mathdoc.fr/item/AL_2008_47_1_a0/

[1] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, A Wiley-Intersci. Publ., John Wiley and Sons, London etc., 1972 | MR

[2] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[3] R. Steinberg, “Automorphisms of finite linear groups”, Canad. J. Math., 12:4 (1960), 606–615 | MR | Zbl

[4] R. W. Carter, Finite groups of Lie type, conjugacy classes and complex characters, Pure Appl. Math., A Wiley-Intersci. Publ., John Wiley and Sons, Chichester–New York etc., 1985 | MR | Zbl

[5] R. Steinberg, Endomorphisms of algebraic groups, Mem. Am. Math. Soc., 80, Am. Math. Soc., Providence, RI, 1968 | MR | Zbl

[6] R. W. Carter, “Centralizers of semisimple elements in the finite classical groups”, Proc. London Math. Soc. (3), 42:1 (1981), 1–41 | DOI | MR | Zbl

[7] D. Deriziotis, Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen Fachbereich Math. Univ. Essen, 11, Universitat Essen, Fachbereich Mathematik, Essen, 1984 | MR | Zbl

[8] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups. Part I. Chapter A: Almost simple $K$-groups, Math. Surv. Monogr., 40(3), Am. Math. Soc., Providence, RI, 1998 | MR | Zbl

[9] A. Borel, J. de Siebenthal, “Les-sous-groupes fermés de rang maximum des groupes de Lie clos”, Comment. Math. Helv., 23 (1949), 200–221 | DOI | MR | Zbl

[10] E. B. Dynkin, “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30:2 (1952), 349–462 | MR | Zbl

[11] R. W. Carter, “Centralizers of semisimple elements in finite groups of Lie type”, Proc. London Math. Soc. (3), 37:3 (1978), 491–507 | DOI | MR | Zbl