Hochschild cohomologies for associative conformal algebras
Algebra i logika, Tome 46 (2007) no. 6, pp. 688-706.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the concept of Hochschild cohomologies for associative conformal algebras. It is shown that the second cohomology group of a conformal Weyl algebra with values in any bimodule is trivial. As a consequence, we derive that the conformal Weyl algebra is segregated in any extension with nilpotent kernel.
Mots-clés : conformal algebra
Keywords: cohomology group, Weyl algebra.
@article{AL_2007_46_6_a1,
     author = {I. A. Dolguntseva},
     title = {Hochschild cohomologies for associative conformal algebras},
     journal = {Algebra i logika},
     pages = {688--706},
     publisher = {mathdoc},
     volume = {46},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_6_a1/}
}
TY  - JOUR
AU  - I. A. Dolguntseva
TI  - Hochschild cohomologies for associative conformal algebras
JO  - Algebra i logika
PY  - 2007
SP  - 688
EP  - 706
VL  - 46
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_6_a1/
LA  - ru
ID  - AL_2007_46_6_a1
ER  - 
%0 Journal Article
%A I. A. Dolguntseva
%T Hochschild cohomologies for associative conformal algebras
%J Algebra i logika
%D 2007
%P 688-706
%V 46
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_6_a1/
%G ru
%F AL_2007_46_6_a1
I. A. Dolguntseva. Hochschild cohomologies for associative conformal algebras. Algebra i logika, Tome 46 (2007) no. 6, pp. 688-706. http://geodesic.mathdoc.fr/item/AL_2007_46_6_a1/

[1] G. Hochschild, “On the cohomology groups of an assotiative algebra”, Ann. Math. (2), 46:1 (1945), 58–67 | DOI | MR | Zbl

[2] P. Kolesnikov, “On the Wedderburn principal theorem in conformal algebras”, J. Algebra Appl., 6:1 (2007), 119–134 | DOI | MR | Zbl

[3] B. Bakalov, A. D'Andrea, V. G. Kac, “Theory of finite pseudoalgebras”, Adv. Math., 162:1 (2001), 1–140 | DOI | MR | Zbl

[4] B. Bakalov, V. G. Kac, A. Voronov, “Cohomology of conformal algebras”, Comm. Math. Phys., 200:3 (1999), 561–598 | DOI | MR | Zbl

[5] Y. Su, “Low dimensional cohomology of general conformal algebras $gc_N$”, J. Math. Phys., 45:1 (2004), 509–524 | DOI | MR | Zbl

[6] V. G. Kac, Vertex algebras for beginners, Univ. Lect. Ser., 10, Am. Math. Soc., Providence, RI, 1998 | MR | Zbl

[7] V. G. Kac, “Formal distribution algebras and conformal algebras”, XII-th Int. Congr. Math. Phys. (ICMP'97), Brisbane, Int. Press, Cambridge, MA, 1999, 80–97 | MR

[8] N. Jacobson, Structure of rings, Colloq. Publ., 37, Am. Math. Soc., Providence, RI, 1956 | MR | Zbl

[9] A. D'Andrea, V. G. Kac, “Structure theory of finite conformal algebras”, Sel. Math., New Ser., 4:3 (1998), 377–418 | DOI | MR

[10] C. Boyallian, V. G. Kac, J. I. Liberati, “On the classification of subalgebras of CendN and $gc_N$”, J. Algebra, 260:1 (2003), 32–63 | DOI | MR | Zbl

[11] A. Retakh, “Associative conformal algebras of linear growth”, J. Algebra, 237:2 (2001), 769–788 | DOI | MR | Zbl

[12] E. I. Zel'manov, “Idempotents in conformal algebras”, Proc. 3d Int. Algebra Conf. (Tainan, Taiwan, June 16–July 1, 2002), eds. Yuen Fong et al., Kluwer Acad. Publ., Dordrecht, 2003, 257–266 | MR | Zbl