The categoricity of the group of all computable automorphisms of the rational numbers
Algebra i logika, Tome 46 (2007) no. 5, pp. 649-662.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there is a first-order sentence $\varphi$ such that the group of all computable automorphisms of the ordering of the rational numbers is its only model among the groups that are embeddable in the group of all computable permutations.
Keywords: group of all computable automorphisms of rational numbers, finitely axiomatizable theory, categorical theory.
@article{AL_2007_46_5_a6,
     author = {A. S. Morozov and J. K. Truss},
     title = {The categoricity of the group of all computable automorphisms of the rational numbers},
     journal = {Algebra i logika},
     pages = {649--662},
     publisher = {mathdoc},
     volume = {46},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_5_a6/}
}
TY  - JOUR
AU  - A. S. Morozov
AU  - J. K. Truss
TI  - The categoricity of the group of all computable automorphisms of the rational numbers
JO  - Algebra i logika
PY  - 2007
SP  - 649
EP  - 662
VL  - 46
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_5_a6/
LA  - ru
ID  - AL_2007_46_5_a6
ER  - 
%0 Journal Article
%A A. S. Morozov
%A J. K. Truss
%T The categoricity of the group of all computable automorphisms of the rational numbers
%J Algebra i logika
%D 2007
%P 649-662
%V 46
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_5_a6/
%G ru
%F AL_2007_46_5_a6
A. S. Morozov; J. K. Truss. The categoricity of the group of all computable automorphisms of the rational numbers. Algebra i logika, Tome 46 (2007) no. 5, pp. 649-662. http://geodesic.mathdoc.fr/item/AL_2007_46_5_a6/

[1] Ch. Ch. Chen, G. Keisler, Teoriya modelei, Mir, M., 1977 | MR

[2] J. Barwise (ed.), Handbook of mathematical logic, North-Holland, Amsterdam etc., 1977 | MR

[3] S. Tennenbaum, “Non-archimedean models for arithmetic”, Not. Am. Math. Soc., 6 (1959), 270

[4] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B. V., Amsterdam etc., 2000 | MR | Zbl

[5] A. Nies, “Separating classes of groups by first-order formulae”, Int. J. Algebra Comput., 13:3 (2003), 287–302 | DOI | MR | Zbl

[6] A. Morozov, A. Nies, “Finitely generated groups and first-order logic”, J. Lond. Math. Soc., II Ser., 71:3 (2005), 545–562 | DOI | MR | Zbl

[7] A. S. Morozov, “On the theories of classes of recursive permutation groups”, Sib. Adv. Math., 1:1 (1991), 138–153 | MR | Zbl

[8] A. S. Morozov, “O rekursivnykh avtomorfizmakh atomnykh bulevykh algebr”, Algebra i logika, 29:4 (1990), 464–490 | MR

[9] P. G. Odifreddi, Classical recursion theory. The theory of functions and sets of natural numbers, Stud. Log. Found. Math., 125, North-Holland, Amsterdam etc., 1992 | Zbl

[10] A. S. Morozov, J. K. Truss, “On computable automorphisms of the rational numbers”, J. Symb. Log., 66:3 (2001), 1458–1470 | DOI | MR | Zbl

[11] J. R. Shoenfield, Mathematical logic, Addison-Wesley Publ. Co., Reading, MA, Menlo Park, CA, London, Don Mills, ON, 1967 | MR | Zbl