Periodic groups saturated with~$L_3(2^m)$
Algebra i logika, Tome 46 (2007) no. 5, pp. 606-626.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak M$ be a set of finite groups. A group $G$ is saturated with groups from $\mathfrak M$ if every finite subgroup of $G$ is contained in a subgroup isomorphic to some member of $\mathfrak M$. It is proved that a periodic group $G$ saturated with groups from the set $\{L_3(2^m)\mid m=1,2,\dots\}$ is isomorphic to $L_3(Q)$, for a locally finite field $Q$ of characteristic 2; in particular, it is locally finite.
Keywords: periodic group, locally finite group.
@article{AL_2007_46_5_a4,
     author = {D. V. Lytkina and V. D. Mazurov},
     title = {Periodic groups saturated with~$L_3(2^m)$},
     journal = {Algebra i logika},
     pages = {606--626},
     publisher = {mathdoc},
     volume = {46},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_5_a4/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - V. D. Mazurov
TI  - Periodic groups saturated with~$L_3(2^m)$
JO  - Algebra i logika
PY  - 2007
SP  - 606
EP  - 626
VL  - 46
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_5_a4/
LA  - ru
ID  - AL_2007_46_5_a4
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A V. D. Mazurov
%T Periodic groups saturated with~$L_3(2^m)$
%J Algebra i logika
%D 2007
%P 606-626
%V 46
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_5_a4/
%G ru
%F AL_2007_46_5_a4
D. V. Lytkina; V. D. Mazurov. Periodic groups saturated with~$L_3(2^m)$. Algebra i logika, Tome 46 (2007) no. 5, pp. 606-626. http://geodesic.mathdoc.fr/item/AL_2007_46_5_a4/

[1] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 16-e izd., In-t matem. SO RAN, Novosibirsk, 2006; http://www.math.nsc.ru/~alglog

[2] A. K. Shlëpkin, “O nekotorykh periodicheskikh gruppakh, nasyschennykh konechnymi prostymi podgruppami”, Matem. trudy, 1:1 (1998), 129–138 | MR | Zbl

[3] A. G. Rubashkin, K. A. Filippov, “O periodicheskikh gruppakh, nasyschennykh $L_2(p^n)$”, Sib. matem. zh., 46:6 (2005), 1388–1392 | MR

[4] K. A. Filippov, Gruppy, nasyschennye konechnymi neabelevymi prostymi gruppami i ikh tsentralnymi rasshireniyami, Diss. ...kand. fiz-mat. nauk, Krasnoyarsk

[5] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, John Wiley Sons, London, 1972 | MR

[6] B. Huppert, Endliche Gruppen I, Grundlehren mathem. Wiss., 134, Springer-Verlag, Berlin etc., 1979 | MR | Zbl

[7] A. K. Shlëpkin, A. G. Rubashkin, “O gruppakh, nasyschennykh konechnym mnozhestvom grupp”, Sib. matem. zh., 45:6 (2004), 1397–1400 | MR | Zbl

[8] V. D. Mazurov, “O beskonechnykh gruppakh s abelevymi tsentralizatorami involyutsii”, Algebra i logika, 39:1 (2000), 74–86 | MR | Zbl

[9] K. Tent, H. van Maldeghem, “On irreducible $(B,N)$-pairs of rank 2”, Forum Math., 13:6 (2001), 853–862 | DOI | MR | Zbl

[10] J. Tits, R. M. Weiss, Moufang polygons, Springer Monogr. Math., Springer-Verlag, Berlin, 2002 | MR

[11] N. Dzhekobson, Stroenie kolets, IL, M., 1961