Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2007_46_5_a0, author = {A. B. Gordienko}, title = {A~paraconsistent extension of {Sylvan's} logic}, journal = {Algebra i logika}, pages = {533--547}, publisher = {mathdoc}, volume = {46}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2007_46_5_a0/} }
A. B. Gordienko. A~paraconsistent extension of Sylvan's logic. Algebra i logika, Tome 46 (2007) no. 5, pp. 533-547. http://geodesic.mathdoc.fr/item/AL_2007_46_5_a0/
[1] N. C. A. daCosta, “On the theory of inconsistent formal system”, Notre Dame J. Formal Logic, 15 (1974), 497–510 | DOI | MR
[2] N. C. A. daCosta, E. H. Alves, “A semantical analysis of the calculi $C_n$”, Notre Dame J. Formal Logic, 18 (1977), 621–680 | DOI | MR
[3] R. A. Lewin, I. F. Mikenberg, M. G. Schwarze, “$C1$ is not algebraizable”, Notre Dame J. Formal Logic, 32:4 (1991), 609–611 | DOI | MR | Zbl
[4] R. Sylvan, “Variations on da Costa $C$ systems and dual-intuitionistic logics. I: Analyses of $C_\omega$ and $CC_\omega$”, Stud. Log., 49:1 (1990), 47–65 | DOI | MR | Zbl
[5] K. Dosen, “Negative modal operators in intuitionistic logic”, Publ. Inst. Math., Nouv. Ser., 35(49) (1984), 3–14 | MR | Zbl
[6] K. Dosen, “Negation as a modal operator”, Rep. Math. Logic, 20 (1986), 15–28 | MR | Zbl
[7] S. A. Kripke, “Semantical analysis of intuitionistic logic. I”, Formal syst. recurs.funct., Proc. 8th logic coll. (Oxford, 1963), 1965, 92–130 | MR | Zbl
[8] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | MR