A~paraconsistent extension of Sylvan's logic
Algebra i logika, Tome 46 (2007) no. 5, pp. 533-547.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with Sylvan's logic $CC_\omega$. It is proved that this logic is a conservative extension of positive intuitionistic logic. Moreover, a paraconsistent extension of Sylvan's logic is constructed, which is also a conservative extension of positive intuitionistic logic and has the property of being decidable. The constructed logic, in which negation is defined via a total accessibility relation, is a natural intuitionistic analog of the modal system S5. For this logic, an axiomatization is given and the completeness theorem is proved.
Keywords: Sylvan's logic, conservative extension, positive intuitionistic logic, completeness theorem.
@article{AL_2007_46_5_a0,
     author = {A. B. Gordienko},
     title = {A~paraconsistent extension of {Sylvan's} logic},
     journal = {Algebra i logika},
     pages = {533--547},
     publisher = {mathdoc},
     volume = {46},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_5_a0/}
}
TY  - JOUR
AU  - A. B. Gordienko
TI  - A~paraconsistent extension of Sylvan's logic
JO  - Algebra i logika
PY  - 2007
SP  - 533
EP  - 547
VL  - 46
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_5_a0/
LA  - ru
ID  - AL_2007_46_5_a0
ER  - 
%0 Journal Article
%A A. B. Gordienko
%T A~paraconsistent extension of Sylvan's logic
%J Algebra i logika
%D 2007
%P 533-547
%V 46
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_5_a0/
%G ru
%F AL_2007_46_5_a0
A. B. Gordienko. A~paraconsistent extension of Sylvan's logic. Algebra i logika, Tome 46 (2007) no. 5, pp. 533-547. http://geodesic.mathdoc.fr/item/AL_2007_46_5_a0/

[1] N. C. A. daCosta, “On the theory of inconsistent formal system”, Notre Dame J. Formal Logic, 15 (1974), 497–510 | DOI | MR

[2] N. C. A. daCosta, E. H. Alves, “A semantical analysis of the calculi $C_n$”, Notre Dame J. Formal Logic, 18 (1977), 621–680 | DOI | MR

[3] R. A. Lewin, I. F. Mikenberg, M. G. Schwarze, “$C1$ is not algebraizable”, Notre Dame J. Formal Logic, 32:4 (1991), 609–611 | DOI | MR | Zbl

[4] R. Sylvan, “Variations on da Costa $C$ systems and dual-intuitionistic logics. I: Analyses of $C_\omega$ and $CC_\omega$”, Stud. Log., 49:1 (1990), 47–65 | DOI | MR | Zbl

[5] K. Dosen, “Negative modal operators in intuitionistic logic”, Publ. Inst. Math., Nouv. Ser., 35(49) (1984), 3–14 | MR | Zbl

[6] K. Dosen, “Negation as a modal operator”, Rep. Math. Logic, 20 (1986), 15–28 | MR | Zbl

[7] S. A. Kripke, “Semantical analysis of intuitionistic logic. I”, Formal syst. recurs.funct., Proc. 8th logic coll. (Oxford, 1963), 1965, 92–130 | MR | Zbl

[8] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | MR