Finite groups with seminormal Schmidt subgroups
Algebra i logika, Tome 46 (2007) no. 4, pp. 448-458.

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-nilpotent finite group whose proper subgroups are all nilpotent is called a Schmidt group. A subgroup $A$ is said to be seminormal in a group $G$ if there exists a subgroup $B$ such that $G=AB$ and $AB_1$ is a proper subgroup of $G$, for every proper subgroup $B_1$ of $B$. Groups that contain seminormal Schmidt subgroups of even order are considered. In particular, we prove that a finite group is solvable if all Schmidt $\{2,3\}$-subgroups and all 5-closed $\{2,5\}$-Schmidt subgroups of the group are seminormal; the classification of finite groups is not used in so doing. Examples of groups are furnished which show that no one of the requirements imposed on the groups is unnecessary.
Keywords: finite group, Schmidt subgroup, subnormal subgroup, seminormal subgroup.
Mots-clés : solvable group
@article{AL_2007_46_4_a2,
     author = {V. N. Knyagina and V. S. Monakhov},
     title = {Finite groups with seminormal {Schmidt} subgroups},
     journal = {Algebra i logika},
     pages = {448--458},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_4_a2/}
}
TY  - JOUR
AU  - V. N. Knyagina
AU  - V. S. Monakhov
TI  - Finite groups with seminormal Schmidt subgroups
JO  - Algebra i logika
PY  - 2007
SP  - 448
EP  - 458
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_4_a2/
LA  - ru
ID  - AL_2007_46_4_a2
ER  - 
%0 Journal Article
%A V. N. Knyagina
%A V. S. Monakhov
%T Finite groups with seminormal Schmidt subgroups
%J Algebra i logika
%D 2007
%P 448-458
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_4_a2/
%G ru
%F AL_2007_46_4_a2
V. N. Knyagina; V. S. Monakhov. Finite groups with seminormal Schmidt subgroups. Algebra i logika, Tome 46 (2007) no. 4, pp. 448-458. http://geodesic.mathdoc.fr/item/AL_2007_46_4_a2/

[1] O. Yu. Shmidt, “Gruppy, vse podgruppy kotorykh spetsialnye”, Matem. sb., 31 (1924), 366–372 | Zbl

[2] V. S. Monakhov, “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Trudy Ukr. matem. kongr., 2002, 81–90 | MR | Zbl

[3] V. N. Knyagina, V. S. Monakhov, “O konechnykh gruppakh s nekotorymi subnormalnymi podgruppami Shmidta”, Sib. matem. zh., 45:6 (2004), 1316–1322 | MR | Zbl

[4] B. Huppert, Endliche Gruppen. I, Grundlehren math. Wiss. Einzeldarstell., 134, Springer-Verlag, Berlin, Heidelberg, New York, 1967 | MR | Zbl

[5] J. C. Lennox, S. E. Stonehewer, Subnormal subgroups of groups, Oxford Math. Monogr., Clarendon Press, Oxford, 1987 | MR | Zbl

[6] V. S. Monakhov, “Proizvedenie razreshimoi i tsiklicheskoi grupp”, VI Vsesoyuz. simp. teorii grupp, Sb. nauch. tr., Naukova dumka, Kiev, 1980, 188–195 | MR

[7] S. A. Syskin, “Ob odnom voprose R. Bera”, Sib. matem. zh., 20:3 (1979), 679–681 | MR | Zbl

[8] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl

[9] A. Carocca, H. Matos, “Some solvability criteria for finite groups”, Hokkaido Math. J., 26:1 (1997), 157–161 | MR | Zbl

[10] V. S. Monakhov, “O proizvedenii 2-razlozhimoi gruppy i gruppy Shmidta”, Dokl. AN BSSR, 18:10 (1974), 871–874 | Zbl

[11] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR | Zbl

[12] B. Huppert, N. Blackburn, Finite groups. II, Grundlehren math. Wiss. Einzeldarstell., 242, Springer-Verlag, Berlin, Heidelberg, New York, 1982 | MR | Zbl