The $p$-rank of $\operatorname{Ext}_\mathbb Z(G,\mathbb Z)$ in certain models of~$ZFC$
Algebra i logika, Tome 46 (2007) no. 3, pp. 369-397.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if the existence of a supercompact cardinal is consistent with $ZFC$, then it is consistent with $ZFC$ that the $p$-rank of $\operatorname{Ext}_\mathbb Z(G,\mathbb Z)$ is as large as possible for every prime $p$ and for any torsion-free Abelian group $G$. Moreover, given an uncountable strong limit cardinal $\mu$ of countable cofinality and a partition of $\Pi$ (the set of primes) into two disjoint subsets $\Pi_0$ and $\Pi_1$, we show that in some model which is very close to $ZFC$, there is an almost free Abelian group $G$ of size $2^\mu=\mu^+$ such that the $p$-rank of $\operatorname{Ext}_\mathbb Z(G,\mathbb Z)$ equals $2^\mu=\mu^+$ for every $p\in\Pi_0$ and 0 otherwise, that is, for $p\in\Pi_1$.
Keywords: theory $ZFC$, supercompact cardinal, strong limit cardinal, almost free Abelian group.
Mots-clés : torsion-free Abelian group
@article{AL_2007_46_3_a5,
     author = {S. Shelah and L. Str\"ungmann},
     title = {The $p$-rank of $\operatorname{Ext}_\mathbb Z(G,\mathbb Z)$ in certain models of~$ZFC$},
     journal = {Algebra i logika},
     pages = {369--397},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_3_a5/}
}
TY  - JOUR
AU  - S. Shelah
AU  - L. Strüngmann
TI  - The $p$-rank of $\operatorname{Ext}_\mathbb Z(G,\mathbb Z)$ in certain models of~$ZFC$
JO  - Algebra i logika
PY  - 2007
SP  - 369
EP  - 397
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_3_a5/
LA  - ru
ID  - AL_2007_46_3_a5
ER  - 
%0 Journal Article
%A S. Shelah
%A L. Strüngmann
%T The $p$-rank of $\operatorname{Ext}_\mathbb Z(G,\mathbb Z)$ in certain models of~$ZFC$
%J Algebra i logika
%D 2007
%P 369-397
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_3_a5/
%G ru
%F AL_2007_46_3_a5
S. Shelah; L. Strüngmann. The $p$-rank of $\operatorname{Ext}_\mathbb Z(G,\mathbb Z)$ in certain models of~$ZFC$. Algebra i logika, Tome 46 (2007) no. 3, pp. 369-397. http://geodesic.mathdoc.fr/item/AL_2007_46_3_a5/

[1] S. Shelah, “Whitehead groups may not be free even assuming $CH$. I”, Isr. J. Math., 28 (1977), 193–204 | DOI | MR | Zbl

[2] S. Shelah, “Whitehead groups may not be free even assuming $CH$. II”, Isr. J. Math., 35 (1980), 257–285 | DOI | MR | Zbl

[3] P. C. Eklof, M. Huber, “On the rank of $\operatorname{Ext}$”, Math. Z., 175 (1980), 159–185 | DOI | MR | Zbl

[4] P. C. Eklof, S. Shelah, “The structure of $\operatorname{Ext}(A,\mathbb Z)$ and $GCH$: possible co-Moore spaces”, Math. Z., 239:1 (2002), 143–157 | DOI | MR | Zbl

[5] R. Grossberg, S. Shelah, “On the structure of $\operatorname{Ext}_p(G,\mathbb Z)$”, J. Algebra, 121:1 (1989), 117–128 | DOI | MR | Zbl

[6] R. Grossberg, S. Shelah, “On cardinalities in quotients of inverse limits of groups”, Math. Jap., 47:2 (1998), 189–197 | MR | Zbl

[7] H. Hiller, M. Huber, S. Shelah, “The structure of $\operatorname{Ext}(A,\mathbb Z)$ and $V=L$”, Math. Z., 162 (1978), 39–50 | DOI | MR | Zbl

[8] A. Mekler, A. Roslanowski, S. Shelah, “On the $p$-rank of $\operatorname{Ext}$”, Isr. J. Math., 112 (1999), 327–356 | DOI | MR | Zbl

[9] G. Sageev, S. Shelah, “Weak compactness and the structure of $\operatorname{Ext}(G,\mathbb Z)$”, Abelian group theory, Proc. Oberwolfach Conf. 1981, Lect. Notes Math., 874, eds. R. Göbel, A. E. Walker, Springer–Verlag, 1981, 87–92 | MR

[10] G. Sageev, S. Shelah, “On the structure of $\operatorname{Ext}(A,\mathbb Z)$ in $ZFC^+$”, J. Symb. Log., 50 (1985), 302–315 | DOI | MR | Zbl

[11] S. Shelah, L. Strüngmann, A characterization of $\operatorname{Ext}(G,\mathbb Z)$ assuming $(V=L)$, submitted

[12] S. Shelah, “The consistency of $\operatorname{Ext}(G,\mathbb Z)=\mathbb Q$”, Isr. J. Math., 39 (1981), 74–82 | DOI | MR | Zbl

[13] A. Mekler, S. Shelah, “Every coseparable group may be free”, Israel J. Math., 81 (1993), 161–178 | DOI | MR | Zbl

[14] P. C. Eklof, A. Mekler, Almost free modules, Set-theoretic methods, revised ed., North-Holland Math. Lib., 65, North-Holland, Amsterdam–New York, 2002 | MR | Zbl

[15] K. Kunen, Set theory, An introduction to independence proofs, Stud. Logic Found. Math., 102, North-Holland, Amsterdam–New York–Oxford, 1980 | MR | Zbl

[16] S. Shelah, Proper and improper forcing, 2nd ed., Perspect. Math. Log., Springer–Verlag, 1998 | MR

[17] L. Fuchs, Infinite Abelian groups, Vols. I, II, Pure Appl. Math., 36, Academic Press, New York–London, 1970, 1973 | MR | Zbl

[18] T. Jech, Set theory, Pure Appl. Math. Ser. Monogr. Textbooks, Academic Press, New York–San Fransisco–London, 1978 | MR | Zbl

[19] S. Shelah, “A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals”, Isr. J. Math., 21 (1975), 319–349 | DOI | MR | Zbl

[20] S. Ben David, “On Shelah's compactness of cardinals”, Isr. J. Math., 31 (1978), 34–56 | DOI | MR | Zbl

[21] P. C. Eklof, S. Shelah, “On Whitehead modules”, J. Algebra, 142:2 (1991), 492–510 | DOI | MR | Zbl