Mots-clés : torsion-free Abelian group
@article{AL_2007_46_3_a5,
author = {S. Shelah and L. Str\"ungmann},
title = {The $p$-rank of $\operatorname{Ext}_\mathbb Z(G,\mathbb Z)$ in certain models of~$ZFC$},
journal = {Algebra i logika},
pages = {369--397},
year = {2007},
volume = {46},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2007_46_3_a5/}
}
S. Shelah; L. Strüngmann. The $p$-rank of $\operatorname{Ext}_\mathbb Z(G,\mathbb Z)$ in certain models of $ZFC$. Algebra i logika, Tome 46 (2007) no. 3, pp. 369-397. http://geodesic.mathdoc.fr/item/AL_2007_46_3_a5/
[1] S. Shelah, “Whitehead groups may not be free even assuming $CH$. I”, Isr. J. Math., 28 (1977), 193–204 | DOI | MR | Zbl
[2] S. Shelah, “Whitehead groups may not be free even assuming $CH$. II”, Isr. J. Math., 35 (1980), 257–285 | DOI | MR | Zbl
[3] P. C. Eklof, M. Huber, “On the rank of $\operatorname{Ext}$”, Math. Z., 175 (1980), 159–185 | DOI | MR | Zbl
[4] P. C. Eklof, S. Shelah, “The structure of $\operatorname{Ext}(A,\mathbb Z)$ and $GCH$: possible co-Moore spaces”, Math. Z., 239:1 (2002), 143–157 | DOI | MR | Zbl
[5] R. Grossberg, S. Shelah, “On the structure of $\operatorname{Ext}_p(G,\mathbb Z)$”, J. Algebra, 121:1 (1989), 117–128 | DOI | MR | Zbl
[6] R. Grossberg, S. Shelah, “On cardinalities in quotients of inverse limits of groups”, Math. Jap., 47:2 (1998), 189–197 | MR | Zbl
[7] H. Hiller, M. Huber, S. Shelah, “The structure of $\operatorname{Ext}(A,\mathbb Z)$ and $V=L$”, Math. Z., 162 (1978), 39–50 | DOI | MR | Zbl
[8] A. Mekler, A. Roslanowski, S. Shelah, “On the $p$-rank of $\operatorname{Ext}$”, Isr. J. Math., 112 (1999), 327–356 | DOI | MR | Zbl
[9] G. Sageev, S. Shelah, “Weak compactness and the structure of $\operatorname{Ext}(G,\mathbb Z)$”, Abelian group theory, Proc. Oberwolfach Conf. 1981, Lect. Notes Math., 874, eds. R. Göbel, A. E. Walker, Springer–Verlag, 1981, 87–92 | MR
[10] G. Sageev, S. Shelah, “On the structure of $\operatorname{Ext}(A,\mathbb Z)$ in $ZFC^+$”, J. Symb. Log., 50 (1985), 302–315 | DOI | MR | Zbl
[11] S. Shelah, L. Strüngmann, A characterization of $\operatorname{Ext}(G,\mathbb Z)$ assuming $(V=L)$, submitted
[12] S. Shelah, “The consistency of $\operatorname{Ext}(G,\mathbb Z)=\mathbb Q$”, Isr. J. Math., 39 (1981), 74–82 | DOI | MR | Zbl
[13] A. Mekler, S. Shelah, “Every coseparable group may be free”, Israel J. Math., 81 (1993), 161–178 | DOI | MR | Zbl
[14] P. C. Eklof, A. Mekler, Almost free modules, Set-theoretic methods, revised ed., North-Holland Math. Lib., 65, North-Holland, Amsterdam–New York, 2002 | MR | Zbl
[15] K. Kunen, Set theory, An introduction to independence proofs, Stud. Logic Found. Math., 102, North-Holland, Amsterdam–New York–Oxford, 1980 | MR | Zbl
[16] S. Shelah, Proper and improper forcing, 2nd ed., Perspect. Math. Log., Springer–Verlag, 1998 | MR
[17] L. Fuchs, Infinite Abelian groups, Vols. I, II, Pure Appl. Math., 36, Academic Press, New York–London, 1970, 1973 | MR | Zbl
[18] T. Jech, Set theory, Pure Appl. Math. Ser. Monogr. Textbooks, Academic Press, New York–San Fransisco–London, 1978 | MR | Zbl
[19] S. Shelah, “A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals”, Isr. J. Math., 21 (1975), 319–349 | DOI | MR | Zbl
[20] S. Ben David, “On Shelah's compactness of cardinals”, Isr. J. Math., 31 (1978), 34–56 | DOI | MR | Zbl
[21] P. C. Eklof, S. Shelah, “On Whitehead modules”, J. Algebra, 142:2 (1991), 492–510 | DOI | MR | Zbl