The universal Lachlan semilattice without the greatest element
Algebra i logika, Tome 46 (2007) no. 3, pp. 299-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with some upper semilattices of $m$-degrees and of numberings of finite families. It is proved that the semilattice of all c.e. $m$-degrees, from which the greatest element is removed, is isomorphic to the semilattice of simple $m$-degrees, the semilattice of hypersimple $m$-degrees, and the semilattice of $\Sigma_2^0$-computable numberings of a finite family of $\Sigma_2^0$-sets, which contains more than one element and does not contain elements that are comparable w.r.t. inclusion.
Keywords: upper semilattice, distributive semilattice, $m$-degree, numbering, Rogers semilattice, Lachlan semilattice.
@article{AL_2007_46_3_a2,
     author = {S. Yu. Podzorov},
     title = {The universal {Lachlan} semilattice without the greatest element},
     journal = {Algebra i logika},
     pages = {299--345},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_3_a2/}
}
TY  - JOUR
AU  - S. Yu. Podzorov
TI  - The universal Lachlan semilattice without the greatest element
JO  - Algebra i logika
PY  - 2007
SP  - 299
EP  - 345
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_3_a2/
LA  - ru
ID  - AL_2007_46_3_a2
ER  - 
%0 Journal Article
%A S. Yu. Podzorov
%T The universal Lachlan semilattice without the greatest element
%J Algebra i logika
%D 2007
%P 299-345
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_3_a2/
%G ru
%F AL_2007_46_3_a2
S. Yu. Podzorov. The universal Lachlan semilattice without the greatest element. Algebra i logika, Tome 46 (2007) no. 3, pp. 299-345. http://geodesic.mathdoc.fr/item/AL_2007_46_3_a2/

[1] A. H. Lachlan, “Recursively enumerable many-one degrees”, Algebra i logika, 11:3 (1972), 326–358 | MR | Zbl

[2] S. Yu. Podzorov, “O lokalnom stroenii polureshëtok Rodzhersa $\Sigma^0_n$-vychislimykh numeratsii”, Algebra i logika, 44:2 (2005), 148–172 | MR | Zbl

[3] S. Yu. Podzorov, “Numerovannye distributivnye polureshëtki”, Matem. tr., 9:2 (2006), 109–132 | MR

[4] S. D. Denisov, “Stroenie verkhnei polureshëtki rekursivno perechislimykh $m$-stepenei i smezhnye voprosy. 1”, Algebra i logika, 17:6 (1978), 643–683 | MR | Zbl

[5] Yu. L. Ershov, “Polureshëtki Rodzhersa konechnykh chastichno uporyadochennykh mnozhestv”, Algebra i logika, 45:1 (2006), 44–84 | MR | Zbl

[6] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR

[7] G. Grettser, Obschaya teoriya reshëtok, Mir, M., 1982 | MR

[8] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[9] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Completness and universality of arithmetical numberings”, Computability and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 11–44 | MR

[10] Yu. L. Ershov, “Gipergiperprostye $m$-stepeni”, Algebra i logika, 8:5 (1969), 523–552 | Zbl