Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2007_46_3_a2, author = {S. Yu. Podzorov}, title = {The universal {Lachlan} semilattice without the greatest element}, journal = {Algebra i logika}, pages = {299--345}, publisher = {mathdoc}, volume = {46}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2007_46_3_a2/} }
S. Yu. Podzorov. The universal Lachlan semilattice without the greatest element. Algebra i logika, Tome 46 (2007) no. 3, pp. 299-345. http://geodesic.mathdoc.fr/item/AL_2007_46_3_a2/
[1] A. H. Lachlan, “Recursively enumerable many-one degrees”, Algebra i logika, 11:3 (1972), 326–358 | MR | Zbl
[2] S. Yu. Podzorov, “O lokalnom stroenii polureshëtok Rodzhersa $\Sigma^0_n$-vychislimykh numeratsii”, Algebra i logika, 44:2 (2005), 148–172 | MR | Zbl
[3] S. Yu. Podzorov, “Numerovannye distributivnye polureshëtki”, Matem. tr., 9:2 (2006), 109–132 | MR
[4] S. D. Denisov, “Stroenie verkhnei polureshëtki rekursivno perechislimykh $m$-stepenei i smezhnye voprosy. 1”, Algebra i logika, 17:6 (1978), 643–683 | MR | Zbl
[5] Yu. L. Ershov, “Polureshëtki Rodzhersa konechnykh chastichno uporyadochennykh mnozhestv”, Algebra i logika, 45:1 (2006), 44–84 | MR | Zbl
[6] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR
[7] G. Grettser, Obschaya teoriya reshëtok, Mir, M., 1982 | MR
[8] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR
[9] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Completness and universality of arithmetical numberings”, Computability and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 11–44 | MR
[10] Yu. L. Ershov, “Gipergiperprostye $m$-stepeni”, Algebra i logika, 8:5 (1969), 523–552 | Zbl