Free subgroups of one-relator relative presentations
Algebra i logika, Tome 46 (2007) no. 3, pp. 290-298

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $G$ is a non-trivial torsion-free group and $w$ is a word over the alphabet $G\cup\{x^{\pm1}_1,\dots,x^{\pm1}_n\}$. It is proved that, for $n\geqslant2$, the group $\widetilde G=\langle G,x_1,x_2,\dots,x_n\,|\,w = 1\rangle$ always contains a non-Abelian free subgroup. For $n=1$, the question whether there exist non-Abelian free subgroups in $\widetilde G$ is amply settled for the unimodular case (i.e., where the exponent sum of $x_1$ in $w$ is one). Some generalizations of these results are discussed.
Keywords: relative presentations, one-relator groups, free subgroups.
@article{AL_2007_46_3_a1,
     author = {A. A. Klyachko},
     title = {Free subgroups of one-relator relative presentations},
     journal = {Algebra i logika},
     pages = {290--298},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_3_a1/}
}
TY  - JOUR
AU  - A. A. Klyachko
TI  - Free subgroups of one-relator relative presentations
JO  - Algebra i logika
PY  - 2007
SP  - 290
EP  - 298
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_3_a1/
LA  - ru
ID  - AL_2007_46_3_a1
ER  - 
%0 Journal Article
%A A. A. Klyachko
%T Free subgroups of one-relator relative presentations
%J Algebra i logika
%D 2007
%P 290-298
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_3_a1/
%G ru
%F AL_2007_46_3_a1
A. A. Klyachko. Free subgroups of one-relator relative presentations. Algebra i logika, Tome 46 (2007) no. 3, pp. 290-298. http://geodesic.mathdoc.fr/item/AL_2007_46_3_a1/