Syntactic approach to constructions of generic models
Algebra i logika, Tome 46 (2007) no. 2, pp. 244-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

A syntactic approach is described to constructing generic models which generalizes the known semantic one. A sufficient condition of a generic model being homogeneous is specified. It is shown that, within the syntactic approach, any countable homogeneous model is generic. Criteria and a sufficient condition are given for the generic models created in syntactic constructions to be saturated.
Keywords: generic model, generic theory.
@article{AL_2007_46_2_a3,
     author = {S. V. Sudoplatov},
     title = {Syntactic approach to constructions of generic models},
     journal = {Algebra i logika},
     pages = {244--268},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_2_a3/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - Syntactic approach to constructions of generic models
JO  - Algebra i logika
PY  - 2007
SP  - 244
EP  - 268
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_2_a3/
LA  - ru
ID  - AL_2007_46_2_a3
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T Syntactic approach to constructions of generic models
%J Algebra i logika
%D 2007
%P 244-268
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_2_a3/
%G ru
%F AL_2007_46_2_a3
S. V. Sudoplatov. Syntactic approach to constructions of generic models. Algebra i logika, Tome 46 (2007) no. 2, pp. 244-268. http://geodesic.mathdoc.fr/item/AL_2007_46_2_a3/

[1] E. Hrushovski, “A new strongly minimal set”, Ann. Pure Appl. Logic, 62:2 (1993), 147–166 | DOI | MR | Zbl

[2] S. V. Sudoplatov, “Polnye teorii s konechnym chislom schëtnykh modelei. II”, Algebra i logika, 45:3 (2006), 314–353 | MR | Zbl

[3] R. Aref'ev, J. T. Baldwin, M. Mazucco, “Classification of $\delta$-invariant amalgamation classes”, J. Symb. Log., 64:4 (1999), 1743–1750 | DOI | MR

[4] J. T. Baldwin, “An almost strongly minimal non-Desarguesian projective plane”, Trans. Amer. Math. Soc., 342:2 (1994), 695–711 | DOI | MR | Zbl

[5] J. T. Baldwin, M. Itai, “$K$-generic projective planes have Morley rank two or infinity”, Math. Log. Q., 40:2 (1994), 143–152 | DOI | MR | Zbl

[6] J. T. Baldwin, N. Shi, “Stable generic structures”, Ann. Pure Appl. Logic, 79:1 (1996), 1–35 | DOI | MR | Zbl

[7] J. T. Baldwin, Problems on “pathological” structures, Preprint, Univ. Illinois, Chicago, 1997 | MR

[8] J. T. Baldwin, K. Holland, “Constructing $\omega$-stable structures: fields of rank 2”, J. Symb. Log., 65:1 (2000), 371–391 | DOI | MR | Zbl

[9] J. T. Baldwin, Stable amalgamation. Dedicated to the memory of A. I. Maltsev, Preprint, Univ. Illinois, Chicago, 2000 | MR

[10] J. T. Baldwin, Rank and homogeneous structures, Report No. 10, 2000/2001, Inst. Mittag-Leffler, The Royal Swedish Acad. Sci., 2001

[11] J. T. Baldwin, K. Holland, “Constructing $\omega$-stable structures: computing rank”, Fundam. Math., 170:1–2 (2001), 1–20 | DOI | MR | Zbl

[12] J. T. Baldwin, Rank and homogeneous structures, Expansions of geometries. Preprint, Univ. Illinois, Chicago, 2003

[13] J. T. Baldwin, K. Holland, “Constructing $\omega$-stable structures: rank $k$ fields”, Notre Dame J. Formal Logic, 44:3 (2003), 139–147 | DOI | MR | Zbl

[14] A. Baudisch, “A new uncountably categorical group”, Trans. Amer. Math. Soc., 48:10 (1996), 3889–3940 | DOI | MR

[15] A. Baudisch, “Closure in $\aleph_0$-categorical bilinear maps”, J. Symb. Log., 65:2 (2000), 914–922 | DOI | MR | Zbl

[16] A. Baudisch, M. Ziegler, Hrushovski's fusion, Preprint, Math. Inst., Freiburg, 2005

[17] A. Baudish, A.Martin-Pizarro, M. Tsigler, “O polyakh i raskraskakh”, Algebra i logika, 45:2 (2006), 159–184 | MR | Zbl

[18] M. J. de Bonis, A. Nesin, “There are $2^{\aleph_0}$ almost strongly minimal generalized $n$-gons that do not interpret an infinite group”, J. Symb. Log., 63:2 (1998), 485–508 | DOI | MR

[19] O. Chapuis, E. Hrushovski, P. Koiran, B. Poizat, “La limite des théories de courbes génériques”, J. Symb. Log., 67:1 (2002), 24–34 | DOI | MR | Zbl

[20] Z. Chatzidakis, A. Pillay, “Generic structures and simple theories”, Ann. Pure Appl. Logic, 95:1–3 (1998), 71–92 | DOI | MR | Zbl

[21] J. B. Goode, “Hrushovski's geometries”, Seminarber., Humboldt-Univ. Berlin, Sekt. Math., 104 (1989), 106–117 | MR | Zbl

[22] B. Herwig, “Weight $\omega$ in stable theories with few types”, J. Symb. Log., 60:2 (1995), 353–373 | DOI | MR | Zbl

[23] E. Hrushovski, A stable $\aleph_0$-categorical pseudoplane, Preprint, Hebrew University, Jerusalem, 1988

[24] E. Hrushovski, “Strongly minimal expansions of algebraically closed fields”, Isr. J. Math., 79:2–3 (1992), 129–151 | DOI | MR | Zbl

[25] E. Hrushovski, B. I. Zil'ber, “Zariski geometries”, Bull. Amer. Math. Soc., New Ser., 28:2 (1993), 315–323 | DOI | MR | Zbl

[26] K. Ikeda, “A note on generic projective planes”, Notre Dame J. Formal Logic, 43:4 (2002), 249–254 | DOI | MR | Zbl

[27] D. W. Kueker, C. Laskowski, “On generic structures”, Notre Dame J. Formal Logic, 33:2 (1992), 175–183 | DOI | MR | Zbl

[28] N. Peatfield, B. Zilber, “Analytic Zariski structures and the Hrushovski construction”, Ann. Pure Appl. Logic, 132:2–3 (2005), 127–180 | DOI | MR | Zbl

[29] B. Poizat, “Le carré de l'égalité”, J. Symb. Log., 64:3 (1999), 1339–1355 | DOI | MR | Zbl

[30] B. Poizat, “L'égalité au cube”, J. Symb. Log., 66:4 (2001), 1647–1676 | DOI | MR | Zbl

[31] B. Poizat, “Amalgames de Hrushovski. Une tentative de classification”, Tits buildings and the model theory of groups, papers of the workshop, Wurzburg, Germany, Sept. 2000, Lond. Math. Soc. Lect. Note Ser., 291, eds. Tent, Katrin, Cambridge Univ. Press, Cambridge, 2002, 195–214 | MR | Zbl

[32] M. Pourmahdian, “Simple generic structures”, Ann. Pure Appl. Logic, 121:2–3 (2003), 227–260 | DOI | MR | Zbl

[33] S. V. Sudoplatov, “$\omega$-Stable trigonometries on a projective plane”, Sib. Adv. Math., 12:4 (2002), 97–124 | MR

[34] V. V. Verbovskiy, On elimination of imaginaries for the strongly minimal sets of E. Hrushovski, Preprint, 1999

[35] F. Wagner, “Relational strucrures and dimensions”, Automorphisms of first order structures, Clarendon Press, Oxford, 1994, 153–181 | MR

[36] B. Zil'ber, Fields with pseudo-exponentiation, Preprint, Math. Inst., Oxford, 2000 | MR

[37] B. Zil'ber, “Bi-coloured fields on the complex numbers”, J. Symb. Log., 69:4 (2004), 1171–1186 | DOI | MR | Zbl

[38] S. V. Sudoplatov, “Polnye teorii s konechnym chislom schëtnykh modelei. I”, Algebra i logika, 43:1 (2004), 110–124 | MR | Zbl

[39] Yu. Zaffe, E. A. Palyutin, S. S. Starchenko, “Modeli superstabilnykh khornovykh teorii”, Algebra i logika, 24:3 (1985), 278–326 | MR

[40] V. Harnik, L. Harrington, “Fundamentals of forking”, Ann. Pure Appl. Logic, 26:3 (1984), 245–286 | DOI | MR | Zbl