The quotient algebra of labeled forests modulo $h$-equivalence
Algebra i logika, Tome 46 (2007) no. 2, pp. 217-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study some natural operations on a structure of finite labeled forests, which is crucial in extending the difference hierarchy to the case of partitions. It is shown that the corresponding quotient algebra modulo the so-called $h$-equivalence is the simplest non-trivial semilattice with discrete closures. The algebra is also characterized as a free algebra in some quasivariety. Part of the results is generalized to countable labeled forests with finite chains.
Keywords: labeled forest, difference hierarchy.
Mots-clés : partition
@article{AL_2007_46_2_a2,
     author = {V. L. Selivanov},
     title = {The quotient algebra of labeled forests modulo $h$-equivalence},
     journal = {Algebra i logika},
     pages = {217--243},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_2_a2/}
}
TY  - JOUR
AU  - V. L. Selivanov
TI  - The quotient algebra of labeled forests modulo $h$-equivalence
JO  - Algebra i logika
PY  - 2007
SP  - 217
EP  - 243
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_2_a2/
LA  - ru
ID  - AL_2007_46_2_a2
ER  - 
%0 Journal Article
%A V. L. Selivanov
%T The quotient algebra of labeled forests modulo $h$-equivalence
%J Algebra i logika
%D 2007
%P 217-243
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_2_a2/
%G ru
%F AL_2007_46_2_a2
V. L. Selivanov. The quotient algebra of labeled forests modulo $h$-equivalence. Algebra i logika, Tome 46 (2007) no. 2, pp. 217-243. http://geodesic.mathdoc.fr/item/AL_2007_46_2_a2/

[1] V. L. Selivanov, “Bulevy ierarkhii razbienii nad redutsiruemoi bazoi”, Algebra i logika, 43:1 (2004), 77–109 ; , Technical Report 276, Institut für Informatik, Universität Würzburg, 2001 http://www.informatik.uni-wuerzburg.de | MR | Zbl

[2] P. Hertling, Unstetigkeitsgrade von Funktionen in der effectiven Analysis, PhD thesis, Fern Universität Hagen, Informatik-Berichte 208-11, 1996 | MR

[3] D. Kuske, “Theories of orders on the set of words”, Theor. Inform. Appl., 40:1 (2006), 53–74 | DOI | MR | Zbl

[4] S. Kosub, Complexity and partitions, PhD Thesis, Würzburg, 2000

[5] S. Kosub, K. Wagner, “The boolean hierarchy of NP-partitions”, Proc. 17th Symp. Theor. Aspects Comp. Sci., Lect. Notes Comp. Sci., 1770, Springer-Verlag, Berlin, 2000, 157–168 | MR | Zbl

[6] V. L. Selivanov, “O strukture stepenei obobschënnykh indeksnykh mnozhestv”, Algebra i logika, 21:4 (1982), 472–491 | MR

[7] V. L. Selivanov, “Ierarkhii giperarifmeticheskikh mnozhestv i funktsii”, Algebra i logika, 22:6 (1983), 666–692 | MR | Zbl

[8] B. A. Davey, H. A. Pristley, Introduction to lattices and order, Cambridge Univ. Press, Cambridge etc., 1990 | MR

[9] J. B. Kruskal, “Well-quasi-ordering, the tree theorem, and Varzsonyi's conjecture”, Trans. Amer. Math. Soc., 95:2 (1960), 210–225 | DOI | MR | Zbl

[10] J. B. Kruskal, “The theory of well-quasi-ordering: a frequently discovered concept”, J. Comb. Theory, Ser. A, 13:3 (1972), 297–305 | DOI | MR | Zbl

[11] V. L. Selivanov, “O strukture stepenei nerazreshimosti indeksnykh mnozhestv”, Algebra i logika, 18:4 (1979), 463–480 | MR | Zbl

[12] A. I. Maltsev, “Konstruktivnye algebry”, Uspekhi matem. n., 16:3 (1961), 3–60 | MR

[13] V. L. Selivanov, “Variatsii na temu svodimosti Vedzha”, Matem. tr., 8:1 (2005), 135–175 | MR | Zbl