Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2007_46_2_a1, author = {E. P. Vdovin}, title = {Carter subgroups of finite almost simple groups}, journal = {Algebra i logika}, pages = {157--216}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2007_46_2_a1/} }
E. P. Vdovin. Carter subgroups of finite almost simple groups. Algebra i logika, Tome 46 (2007) no. 2, pp. 157-216. http://geodesic.mathdoc.fr/item/AL_2007_46_2_a1/
[1] R. W. Carter, “Nilpotent self-normalizing subgroups of soluble groups”, Math. Z., 75 (1961), 136–139 | DOI | MR | Zbl
[2] L. DiMartino, M. C. Tamburini, “I sottogruppi nilpotenti autonormalizzanti di $S_n$ e di $A_n$”, Istit. Lombardo Accad. Sci. Lett., Rend., Sez. A, 110 (1976), 235–241 | MR
[3] L. DiMartino, M. C. Tamburini, “Carter subgroups of projective linear groups,”, Boll. Unione Mat. Ital., VII Ser., B, 1 (1987), 905–915 | MR
[4] N. A. Vavilov, “Nilpotentnye samonormalizuemye podgruppy obschikh lineinykh grupp nad konechnym polem”, LOMI, 86 (1979), 34–39 | MR | Zbl
[5] L. DiMartino, M. C. Tamburini, A. E. Zalesskii, “Carter subgroups in classical groups”, J. Lond. Math. Soc., II Ser., 55:2 (1997), 264–276 | DOI | MR
[6] A. Previtali, M. C. Tamburini, E. P. Vdovin, “The Carter subgroups of some classical groups”, Bull. Lond. Math. Soc., 36:1 (2004), 145–155 | DOI | MR | Zbl
[7] A. D'aniello, “Sull' esistenza di sottogruppi nilpotenti autonormalizzanti in alcuni gruppi semplici, II”, Atti Accad. Naz. Lincei, VIII Ser., Rend., Cl. Sci. Fis. Mat. Nat., 74 (1983), 1–6 | MR
[8] F. DallaVolta, A. Lucchini, M. C. Tamburini, “On the conjugacy problem for Carter subgroups”, Commun. Algebra, 26:2 (1998), 395–401 | DOI | MR
[9] E. P. Vdovin, “O probleme sopryazhennosti karterovykh podgrupp”, Sib. matem. zh., 47:4 (2006), 725–730 | MR | Zbl
[10] M. C. Tamburini, E. P. Vdovin, “Carter subgroups of finite groups”, J. Algebra, 255:1 (2002), 148–163 | DOI | MR | Zbl
[11] W. Feit, J. Thompson, “Solvability of groups of odd order”, Pac. J. Math., 13:3 (1963), 775–1029 | MR | Zbl
[12] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., A Wiley-Interscience Publ., 28, John Wiley and Sons, London etc., 1972 | MR
[13] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR
[14] R. Steinberg, “Automorphisms of finite linear groups”, Can. J. Math., 12:4 (1960), 606–615 | MR | Zbl
[15] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure Appl. Math., A Wiley-Interscience Publ., John Wiley and Sons, Chichester-New York etc., 1985 | MR | Zbl
[16] R. W. Carter, “Centralizers of semisimple elements in the finite classical groups”, Proc. Lond. Math. Soc., III Ser., 42:1 (1981), 1–41 | DOI | MR | Zbl
[17] D. Deriziotis, Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen Fachbereich Math. Univ. Essen, 11, Univ. Essen Fachbereich Math., Essen, 1984 | MR | Zbl
[18] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups. Part I. Chapter A: Almost simple $K$-groups, Math. Surv. Monogr., 40(3), Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[19] R. Steinberg, Endomorphisms of algebraic groups, Mem. Amer. Math. Soc., 80, Amer. Math. Soc., Providence, RI, 1968 | MR
[20] A. Borel, J. de Siebental, “Les-sous-groupes fermés de rang maximum des groupes de Lie clos”, Comment. Math. Helv., 23 (1949), 200–221 | DOI | MR | Zbl
[21] E. B. Dynkin, “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30:2 (1952), 349–462 | MR | Zbl
[22] J. E. Humphreys, Conjugacy classes in semisimple algebraic groups, Math. Surv. Monogr., 43, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl
[23] R. W. Carter, “Centralizers of semisimple elements in finite groups of Lie type”, Proc. Lond. Math. Soc., III Ser., 37:3 (1978), 491–507 | DOI | MR | Zbl
[24] B. Hartley, G. Shute, “Monomorphisms and direct limits of finite groups of Lie type”, Q. J. Math., Oxf. II Ser., 35:137 (1984), 49–71 | DOI | MR | Zbl
[25] A. S. Kondratev, “Normalizatory silovskikh 2-podgrupp v konechnykh prostykh gruppakh”, Matem. zametki, 78:3 (2005), 368–376 | MR
[26] A. S. Kondratev, V. D. Mazurov, “2-signalizatory konechnykh prostykh grupp”, Algebra i logika, 42:5 (2003), 594–623 | MR
[27] A. Borel, R. Karter, K. B. Kertis, N. Ivakhori, T. A. Springer, R. Steinberg, Seminar po algebraicheskim gruppam, Mir, M., 1973 | MR | Zbl
[28] R. W. Carter, “Conjugacy classes in the Weyl group”, Compos. Math., 25:1 (1972), 1–59 | MR | Zbl
[29] D. Gorenstein, R. Lyons, The local structure of finite groups of characteristic 2 type, Mem. Amer. Math. Soc., 42, Amer. Math. Soc., Providence, RI, 1983 | MR
[30] W. Feit, G. Zukerman, “Reality properties of conjugacy classes in spin groups and symplectic groups”, Algebraists' homage: papers in ring theory and related topics, New Haven, Conn., 1981, Amer. Math. Soc., Providence, RI, 1982, 239–253 | MR
[31] H. N. Ward, “On Ree's series of simple groups”, Trans. Amer. Math. Soc., 121:1 (1966), 62–80 | DOI | MR
[32] V. M. Levchuk, Ya. N. Nuzhin, “O stroenii grupp Ri”, Algebra i logika, 24:1 (1985), 26–41 | MR | Zbl
[33] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[34] M. J. Wonenburger, “Transformations which are products of involutions”, J. Math. Mech., 16:1 (1966), 32–38 | MR
[35] G. M. Seitz, “Unipotent elements, tilting modules, and saturation”, Invent. Math, 141:3 (2000), 467–502 | DOI | MR | Zbl
[36] P. H. Tiep, A. E. Zalesski, “Real conjugacy classes in algebraic groups and finite groups of Lie type”, J. Group Theory, 8:3 (2005), 291–315 | DOI | MR | Zbl
[37] D. J. S. Robinson, A Course in the theory of groups, Springer-Verlag, New York, 1996 | MR