The cyclic structure of maximal tori of the finite classical groups
Algebra i logika, Tome 46 (2007) no. 2, pp. 129-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Maximal tori of all finite simple classical groups, as well as of special and general projective linear and unitary groups, are treated. For every such torus, its expression as a direct sum of cyclic groups is obtained in an explicit form.
Keywords: finite simple group, classical group, semisimple element, spectrum of a group.
Mots-clés : maximal torus
@article{AL_2007_46_2_a0,
     author = {A. A. Buturlakin and M. A. Grechkoseeva},
     title = {The cyclic structure of maximal tori of the finite classical groups},
     journal = {Algebra i logika},
     pages = {129--156},
     year = {2007},
     volume = {46},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_2_a0/}
}
TY  - JOUR
AU  - A. A. Buturlakin
AU  - M. A. Grechkoseeva
TI  - The cyclic structure of maximal tori of the finite classical groups
JO  - Algebra i logika
PY  - 2007
SP  - 129
EP  - 156
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_2_a0/
LA  - ru
ID  - AL_2007_46_2_a0
ER  - 
%0 Journal Article
%A A. A. Buturlakin
%A M. A. Grechkoseeva
%T The cyclic structure of maximal tori of the finite classical groups
%J Algebra i logika
%D 2007
%P 129-156
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/AL_2007_46_2_a0/
%G ru
%F AL_2007_46_2_a0
A. A. Buturlakin; M. A. Grechkoseeva. The cyclic structure of maximal tori of the finite classical groups. Algebra i logika, Tome 46 (2007) no. 2, pp. 129-156. http://geodesic.mathdoc.fr/item/AL_2007_46_2_a0/

[1] G. M. Seitz, “On the subgroup structure of classical groups”, Commun. Algebra, 10:8 (1982), 875–885 | DOI | MR | Zbl

[2] “R. W. Carter”, Proc. Lond. Math. Soc., III Ser., 42:1 (1981), 1–41 | DOI | MR

[3] Seminar po algebraicheskim gruppam, Mir, M., 1973 | MR

[4] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure Appl. Math., A Wiley-Interscience Publ., John Wiley and Sons, Chichester-New York etc., 1985 | MR | Zbl

[5] R. W. Carter, “Conjugacy classes in the Weyl group”, Compos. Math., 25:1 (1972), 1–59 | MR | Zbl

[6] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., A Wiley-Interscience Publ., 28, John Wiley and Sons, London etc., 1972 | MR

[7] M. Aschbacher, Finite group theory, Cambridge Stud. Adv. Math., 10, Cambridge Univ. Press, Cambridge etc., 1986 | MR | Zbl

[8] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lect. Note Ser., 129, Cambridge Univ. Press, Cambridge etc., 1990 | MR | Zbl

[9] F. D. Veldkamp, “Regular elements in anisotropic tori”, Contributions to algebra., A collect. papers ded. E. Kolchin, eds. H. Bass, Ph. J. Cassidy, J. Kovacic, Academic Press, New York etc., 1977, 389–424 | MR