Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2007_46_1_a2, author = {Ch. K. Gupta and N. S. Romanovskii}, title = {The property of being equationally {Noetherian} for some soluble groups}, journal = {Algebra i logika}, pages = {46--59}, publisher = {mathdoc}, volume = {46}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2007_46_1_a2/} }
Ch. K. Gupta; N. S. Romanovskii. The property of being equationally Noetherian for some soluble groups. Algebra i logika, Tome 46 (2007) no. 1, pp. 46-59. http://geodesic.mathdoc.fr/item/AL_2007_46_1_a2/
[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I. Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl
[2] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl
[3] G. Baumslag, A. Myasnikov, V. Roman'kov, “Two theorems about equationally noetherian groups”, J. Algebra, 194:2 (1997), 654–664 | DOI | MR | Zbl
[4] R. Bryant, “The verbal topology of a group”, J. Algebra, 48 (1977), 340–346 | DOI | MR | Zbl
[5] C. K. Gupta, “The free centre-by-metabelian groups”, J. Aust. Math. Soc., 16 (1973), 294–299 | DOI | MR | Zbl
[6] C. K. Gupta, N. S. Romanovski, “On torsion in factors of polynilpotent series of a group with a single relation”, Int. J. Algebra Comput., 14:4 (2004), 513–523 | DOI | MR | Zbl
[7] P. H. Kropholler, P. A. Linnell, J. A. Moody, “Applications of a new $K$-theoretic theorem to soluble group rings”, Proc. Am. Math. Soc., 104:3 (1988), 675–684 | DOI | MR | Zbl
[8] V. N. Remeslennikov, V. G. Sokolov, “Nekotorye svoistva vlozheniya Magnusa”, Algebra i logika, 9:5 (1970), 566–578 | MR | Zbl