The property of being equationally Noetherian for some soluble groups
Algebra i logika, Tome 46 (2007) no. 1, pp. 46-59

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak B$ be a class of groups $A$ which are soluble, equationally Noetherian, and have a central series $$ A=A_1\geqslant A_2 \geqslant\ldots A_n\geqslant\ldots $$ such that $\bigcap A_n=1$ and all factors $A_n/A_{n+1}$ are torsion-free groups; $D$ is a direct product of finitely many cyclic groups of infinite or prime orders. We prove that the wreath product $D\wr A$ is an equationally Noetherian group. As a consequence we show that free soluble groups of arbitrary derived lengths and ranks are equationally Noetherian.
Keywords: equationally Noetherian group, free soluble group.
@article{AL_2007_46_1_a2,
     author = {Ch. K. Gupta and N. S. Romanovskii},
     title = {The property of being equationally {Noetherian} for some soluble groups},
     journal = {Algebra i logika},
     pages = {46--59},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_1_a2/}
}
TY  - JOUR
AU  - Ch. K. Gupta
AU  - N. S. Romanovskii
TI  - The property of being equationally Noetherian for some soluble groups
JO  - Algebra i logika
PY  - 2007
SP  - 46
EP  - 59
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_1_a2/
LA  - ru
ID  - AL_2007_46_1_a2
ER  - 
%0 Journal Article
%A Ch. K. Gupta
%A N. S. Romanovskii
%T The property of being equationally Noetherian for some soluble groups
%J Algebra i logika
%D 2007
%P 46-59
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_1_a2/
%G ru
%F AL_2007_46_1_a2
Ch. K. Gupta; N. S. Romanovskii. The property of being equationally Noetherian for some soluble groups. Algebra i logika, Tome 46 (2007) no. 1, pp. 46-59. http://geodesic.mathdoc.fr/item/AL_2007_46_1_a2/