The property of being equationally Noetherian for some soluble groups
Algebra i logika, Tome 46 (2007) no. 1, pp. 46-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak B$ be a class of groups $A$ which are soluble, equationally Noetherian, and have a central series $$ A=A_1\geqslant A_2 \geqslant\ldots A_n\geqslant\ldots $$ such that $\bigcap A_n=1$ and all factors $A_n/A_{n+1}$ are torsion-free groups; $D$ is a direct product of finitely many cyclic groups of infinite or prime orders. We prove that the wreath product $D\wr A$ is an equationally Noetherian group. As a consequence we show that free soluble groups of arbitrary derived lengths and ranks are equationally Noetherian.
Keywords: equationally Noetherian group, free soluble group.
@article{AL_2007_46_1_a2,
     author = {Ch. K. Gupta and N. S. Romanovskii},
     title = {The property of being equationally {Noetherian} for some soluble groups},
     journal = {Algebra i logika},
     pages = {46--59},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_1_a2/}
}
TY  - JOUR
AU  - Ch. K. Gupta
AU  - N. S. Romanovskii
TI  - The property of being equationally Noetherian for some soluble groups
JO  - Algebra i logika
PY  - 2007
SP  - 46
EP  - 59
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_1_a2/
LA  - ru
ID  - AL_2007_46_1_a2
ER  - 
%0 Journal Article
%A Ch. K. Gupta
%A N. S. Romanovskii
%T The property of being equationally Noetherian for some soluble groups
%J Algebra i logika
%D 2007
%P 46-59
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_1_a2/
%G ru
%F AL_2007_46_1_a2
Ch. K. Gupta; N. S. Romanovskii. The property of being equationally Noetherian for some soluble groups. Algebra i logika, Tome 46 (2007) no. 1, pp. 46-59. http://geodesic.mathdoc.fr/item/AL_2007_46_1_a2/

[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I. Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[2] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[3] G. Baumslag, A. Myasnikov, V. Roman'kov, “Two theorems about equationally noetherian groups”, J. Algebra, 194:2 (1997), 654–664 | DOI | MR | Zbl

[4] R. Bryant, “The verbal topology of a group”, J. Algebra, 48 (1977), 340–346 | DOI | MR | Zbl

[5] C. K. Gupta, “The free centre-by-metabelian groups”, J. Aust. Math. Soc., 16 (1973), 294–299 | DOI | MR | Zbl

[6] C. K. Gupta, N. S. Romanovski, “On torsion in factors of polynilpotent series of a group with a single relation”, Int. J. Algebra Comput., 14:4 (2004), 513–523 | DOI | MR | Zbl

[7] P. H. Kropholler, P. A. Linnell, J. A. Moody, “Applications of a new $K$-theoretic theorem to soluble group rings”, Proc. Am. Math. Soc., 104:3 (1988), 675–684 | DOI | MR | Zbl

[8] V. N. Remeslennikov, V. G. Sokolov, “Nekotorye svoistva vlozheniya Magnusa”, Algebra i logika, 9:5 (1970), 566–578 | MR | Zbl