Lattices of dominions of universal algebras
Algebra i logika, Tome 46 (2007) no. 1, pp. 26-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We fix a universal algebra $A$ and its subalgebra $H$. The dominion of $H$ in $A$ (in a class $\mathcal M$) is the set of all elements $a\in A$ such that any pair of homomorphisms $f,g:A\rightarrow M\in\mathcal M$ satisfies the following: if $f$ and $g$ coincide on $H$ then $f(a)=g(a)$. In association with every quasivariety, therefore, is a dominion of $H$ in $A$. Sufficient conditions are specified under which a set of dominions form a lattice. The lattice of dominions is explored for down-semidistributivity. We point out a class of algebras (including groups, rings) such that every quasivariety in this class contains an algebra whose lattice of dominions is anti-isomorphic to a lattice of subquasivarieties of that quasivariety.
Keywords: dominion, lattice of dominions, quasivariety.
@article{AL_2007_46_1_a1,
     author = {A. I. Budkin},
     title = {Lattices of dominions of universal algebras},
     journal = {Algebra i logika},
     pages = {26--45},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_1_a1/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Lattices of dominions of universal algebras
JO  - Algebra i logika
PY  - 2007
SP  - 26
EP  - 45
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_1_a1/
LA  - ru
ID  - AL_2007_46_1_a1
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Lattices of dominions of universal algebras
%J Algebra i logika
%D 2007
%P 26-45
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_1_a1/
%G ru
%F AL_2007_46_1_a1
A. I. Budkin. Lattices of dominions of universal algebras. Algebra i logika, Tome 46 (2007) no. 1, pp. 26-45. http://geodesic.mathdoc.fr/item/AL_2007_46_1_a1/

[1] J. R. Isbell, “Epimorphisms and dominions”, Proc. conf. categorical algebra, La Jolla 1965, Lange and Springer, New York, 1966 | MR

[2] P. M. Higgins, “Epimorphisms and amalgams”, Colloq. Math., 56 (1988), 1–17 | MR | Zbl

[3] J. R. Isbell, “Epimorphisms and dominions. IV”, J. Lond. Math. Soc., II Ser., 1 (1969), 265–273 | DOI | MR | Zbl

[4] S. A. Shakhova, “O reshetkakh dominionov v kvazimnogoobraziyakh abelevykh grupp”, Algebra i logika, 44:2 (2005), 238–251 | MR | Zbl

[5] A. I. Budkin, “Dominions in quasivarieties of universal algebras”, Stud. Log., 78:1-2 (2004), 107–127 | DOI | MR | Zbl

[6] A. I. Maltsev, “Kvaziprimitivnye klassy abstraktnykh algebr”, Dokl. AN SSSR, 108:2 (1956), 187–189

[7] A. I. Budkin, “On coatoms in lattices of quasivarieties of algebraic systems”, Algebra Univers., 46:1-2 (2001), 15–24 | MR | Zbl

[8] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. un-ta, Barnaul, 2002

[9] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[10] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, (Sib. shkola algebry i logiki), Nauch. kniga (IDMI), Novosibirsk, 1999 | Zbl