Irreducible characters with equal roots in the groups $S_n$ and $A_n$
Algebra i logika, Tome 46 (2007) no. 1, pp. 3-25
We show that treating of (non-trivial) pairs of irreducible characters of the group $S_n$ sharing the same set of roots on one of the sets $A_n$ and $S_n\setminus A_n$ is divided into three parts. This, in particular, implies that any pair of such characters $\chi^\alpha$ and $\chi^\beta$ ($\alpha$ and $\beta$ are respective partitions of a number $n$) possesses the following property: lengths $d(\alpha)$ and $d(\beta)$ of principal diagonals of Young diagrams for $\alpha$ and $\beta$ differ by at most 1.
Mots-clés :
group
Keywords: irreducible character, Young diagram.
Keywords: irreducible character, Young diagram.
@article{AL_2007_46_1_a0,
author = {V. A. Belonogov},
title = {Irreducible characters with equal roots in the groups $S_n$ and~$A_n$},
journal = {Algebra i logika},
pages = {3--25},
year = {2007},
volume = {46},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2007_46_1_a0/}
}
V. A. Belonogov. Irreducible characters with equal roots in the groups $S_n$ and $A_n$. Algebra i logika, Tome 46 (2007) no. 1, pp. 3-25. http://geodesic.mathdoc.fr/item/AL_2007_46_1_a0/
[1] V. A. Belonogov, “O neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Sib. matem. zh., 45:5 (2004), 977–994 | MR | Zbl
[2] V. A. Belonogov, “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$. II”, Algebra i logika, 44:6 (2005), 643–663 | MR | Zbl
[3] V. A. Belonogov, “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$”, Algebra i logika, 44:1 (2005), 24–43 | MR | Zbl
[4] V. A. Belonogov, Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990
[5] G. James, A. Kerber, The representation theory of the symmetric group, Addison-Wesley, London, 1981 | MR
[6] G. Dzheims, Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR