Irreducible characters with equal roots in the groups $S_n$ and~$A_n$
Algebra i logika, Tome 46 (2007) no. 1, pp. 3-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that treating of (non-trivial) pairs of irreducible characters of the group $S_n$ sharing the same set of roots on one of the sets $A_n$ and $S_n\setminus A_n$ is divided into three parts. This, in particular, implies that any pair of such characters $\chi^\alpha$ and $\chi^\beta$ ($\alpha$ and $\beta$ are respective partitions of a number $n$) possesses the following property: lengths $d(\alpha)$ and $d(\beta)$ of principal diagonals of Young diagrams for $\alpha$ and $\beta$ differ by at most 1.
Mots-clés : group
Keywords: irreducible character, Young diagram.
@article{AL_2007_46_1_a0,
     author = {V. A. Belonogov},
     title = {Irreducible characters with equal roots in the groups $S_n$ and~$A_n$},
     journal = {Algebra i logika},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2007_46_1_a0/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - Irreducible characters with equal roots in the groups $S_n$ and~$A_n$
JO  - Algebra i logika
PY  - 2007
SP  - 3
EP  - 25
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2007_46_1_a0/
LA  - ru
ID  - AL_2007_46_1_a0
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T Irreducible characters with equal roots in the groups $S_n$ and~$A_n$
%J Algebra i logika
%D 2007
%P 3-25
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2007_46_1_a0/
%G ru
%F AL_2007_46_1_a0
V. A. Belonogov. Irreducible characters with equal roots in the groups $S_n$ and~$A_n$. Algebra i logika, Tome 46 (2007) no. 1, pp. 3-25. http://geodesic.mathdoc.fr/item/AL_2007_46_1_a0/

[1] V. A. Belonogov, “O neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Sib. matem. zh., 45:5 (2004), 977–994 | MR | Zbl

[2] V. A. Belonogov, “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$. II”, Algebra i logika, 44:6 (2005), 643–663 | MR | Zbl

[3] V. A. Belonogov, “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$”, Algebra i logika, 44:1 (2005), 24–43 | MR | Zbl

[4] V. A. Belonogov, Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990

[5] G. James, A. Kerber, The representation theory of the symmetric group, Addison-Wesley, London, 1981 | MR

[6] G. Dzheims, Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR