Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2006_45_6_a1, author = {A. A. Bulatov}, title = {The property of being polynomial for {Mal'tsev} constraint satisfaction problems}, journal = {Algebra i logika}, pages = {655--686}, publisher = {mathdoc}, volume = {45}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2006_45_6_a1/} }
A. A. Bulatov. The property of being polynomial for Mal'tsev constraint satisfaction problems. Algebra i logika, Tome 45 (2006) no. 6, pp. 655-686. http://geodesic.mathdoc.fr/item/AL_2006_45_6_a1/
[1] A. K. Mackworth, “Consistency in networks of relations”, Artif. Intell., 8 (1977), 99–118 | DOI | Zbl
[2] T. J. Schaefer, “The complexity of satisfiability problems”, Proc. STOC'78, 1978, 216–226 | MR
[3] T. Feder, M. Y. Vardi, “The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory”, SIAM J. Comput., 28:1 (1998), 57–104 | DOI | MR | Zbl
[4] P. G. Jeavons, D. A. Cohen, M. Gyssens, “Closure properties of constraints”, J. ACM, 44:4 (1997), 527–548 | DOI | MR | Zbl
[5] P. G. Jeavons, “On the algebraic structure of combinatorial problems”, Theor. Comput. Sci., 200:1–2 (1998), 185–204 | DOI | MR | Zbl
[6] A. A. Bulatov, P. G. Jeavons, A. A. Krokhin, “Constraint satisfaction problems and finite algebras”, Proc. ICALP'00, Lect. Notes Comput. Sci., 1853, Springer-Verlag, Berlin, 2000, 272–282 | MR | Zbl
[7] A. A. Bulatov, P. G. Jeavons, Algebraic approach to multi-sorted constraints, Techn. Report PRG-RR-01-18, Comput. Lab., Oxford Univ., 2001
[8] T. Feder, “Constraint satisfaction on finite groups with near subgroups”, J. Algebra
[9] A. A. Bulatov, P. G. Jeavons, “An algebraic approach to multi-sorted constraints”, Proc. CP'03, 2003, 197–202
[10] A. A. Bulatov, P. G. Jeavons, “Algebraic structures in combinatorial problems”, Techn. Report MATH-AL-4-2001, Dresden Techn. Univ., 2001 | Zbl
[11] A. A. Bulatov, P. G. Jeavons, A. A. Krokhin, “Classifying complexity of constraints using finite algebras”, SIAM J. Comput., 34:3 (2005), 720–742 | DOI | MR | Zbl
[12] D. Hobby, R. N. McKenzie, “The structure of finite algebras”, Contemp. Math., 76, Am. Math. Soc., Providence, RI, 1988 | MR | Zbl
[13] A. A. Bulatov, “Three-element Mal'tsev algebras”, Acta Sci. Math.