The property of being polynomial for Mal'tsev constraint satisfaction problems
Algebra i logika, Tome 45 (2006) no. 6, pp. 655-686.

Voir la notice de l'article provenant de la source Math-Net.Ru

A combinatorial constraint satisfaction problem aims at expressing in unified terms a wide spectrum of problems in various branches of mathematics, computer science, and AI. The generalized satisfiability problem is NP-complete, but many of its restricted versions can be solved in a polynomial time. It is known that the computational complexity of a restricted constraint satisfaction problem depends only on a set of polymorphisms of relations which are admitted to be used in the problem. For the case where a set of such relations is invariant under some Mal'tsev operation, we show that the corresponding constraint satisfaction problem can be solved in a polynomial time.
@article{AL_2006_45_6_a1,
     author = {A. A. Bulatov},
     title = {The property of being polynomial for {Mal'tsev} constraint satisfaction problems},
     journal = {Algebra i logika},
     pages = {655--686},
     publisher = {mathdoc},
     volume = {45},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_6_a1/}
}
TY  - JOUR
AU  - A. A. Bulatov
TI  - The property of being polynomial for Mal'tsev constraint satisfaction problems
JO  - Algebra i logika
PY  - 2006
SP  - 655
EP  - 686
VL  - 45
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_6_a1/
LA  - ru
ID  - AL_2006_45_6_a1
ER  - 
%0 Journal Article
%A A. A. Bulatov
%T The property of being polynomial for Mal'tsev constraint satisfaction problems
%J Algebra i logika
%D 2006
%P 655-686
%V 45
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_6_a1/
%G ru
%F AL_2006_45_6_a1
A. A. Bulatov. The property of being polynomial for Mal'tsev constraint satisfaction problems. Algebra i logika, Tome 45 (2006) no. 6, pp. 655-686. http://geodesic.mathdoc.fr/item/AL_2006_45_6_a1/

[1] A. K. Mackworth, “Consistency in networks of relations”, Artif. Intell., 8 (1977), 99–118 | DOI | Zbl

[2] T. J. Schaefer, “The complexity of satisfiability problems”, Proc. STOC'78, 1978, 216–226 | MR

[3] T. Feder, M. Y. Vardi, “The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory”, SIAM J. Comput., 28:1 (1998), 57–104 | DOI | MR | Zbl

[4] P. G. Jeavons, D. A. Cohen, M. Gyssens, “Closure properties of constraints”, J. ACM, 44:4 (1997), 527–548 | DOI | MR | Zbl

[5] P. G. Jeavons, “On the algebraic structure of combinatorial problems”, Theor. Comput. Sci., 200:1–2 (1998), 185–204 | DOI | MR | Zbl

[6] A. A. Bulatov, P. G. Jeavons, A. A. Krokhin, “Constraint satisfaction problems and finite algebras”, Proc. ICALP'00, Lect. Notes Comput. Sci., 1853, Springer-Verlag, Berlin, 2000, 272–282 | MR | Zbl

[7] A. A. Bulatov, P. G. Jeavons, Algebraic approach to multi-sorted constraints, Techn. Report PRG-RR-01-18, Comput. Lab., Oxford Univ., 2001

[8] T. Feder, “Constraint satisfaction on finite groups with near subgroups”, J. Algebra

[9] A. A. Bulatov, P. G. Jeavons, “An algebraic approach to multi-sorted constraints”, Proc. CP'03, 2003, 197–202

[10] A. A. Bulatov, P. G. Jeavons, “Algebraic structures in combinatorial problems”, Techn. Report MATH-AL-4-2001, Dresden Techn. Univ., 2001 | Zbl

[11] A. A. Bulatov, P. G. Jeavons, A. A. Krokhin, “Classifying complexity of constraints using finite algebras”, SIAM J. Comput., 34:3 (2005), 720–742 | DOI | MR | Zbl

[12] D. Hobby, R. N. McKenzie, “The structure of finite algebras”, Contemp. Math., 76, Am. Math. Soc., Providence, RI, 1988 | MR | Zbl

[13] A. A. Bulatov, “Three-element Mal'tsev algebras”, Acta Sci. Math.