Slender partial quadrangles and their automorphisms
Algebra i logika, Tome 45 (2006) no. 5, pp. 603-619.

Voir la notice de l'article provenant de la source Math-Net.Ru

The partial quadrangle $PQ(s,t,\mu)$ is an incidence system consisting of points and lines in which every line contains $s+1$ points, every point sits on $t+1$ lines (two lines meet in at most one point), and the meet of the neighborhoods of any two non-adjacent points in the collinearity graph is a $\mu$-coclique. We provide a classification for partial quadrangles $PQ(s,t,\mu)$ with $t\leqslant 6$, and study into their automorphisms.
Keywords: partial quadrangle, incidence system
Mots-clés : automorphism.
@article{AL_2006_45_5_a4,
     author = {A. A. Makhnev and M. S. Nirova},
     title = {Slender partial quadrangles and their automorphisms},
     journal = {Algebra i logika},
     pages = {603--619},
     publisher = {mathdoc},
     volume = {45},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_5_a4/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. S. Nirova
TI  - Slender partial quadrangles and their automorphisms
JO  - Algebra i logika
PY  - 2006
SP  - 603
EP  - 619
VL  - 45
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_5_a4/
LA  - ru
ID  - AL_2006_45_5_a4
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. S. Nirova
%T Slender partial quadrangles and their automorphisms
%J Algebra i logika
%D 2006
%P 603-619
%V 45
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_5_a4/
%G ru
%F AL_2006_45_5_a4
A. A. Makhnev; M. S. Nirova. Slender partial quadrangles and their automorphisms. Algebra i logika, Tome 45 (2006) no. 5, pp. 603-619. http://geodesic.mathdoc.fr/item/AL_2006_45_5_a4/

[1] P. Cameron, “Partial quadrangles”, Q. J. Math. Oxf. II. Ser., 26 (1975), 61–73 | DOI | MR | Zbl

[2] A. A. Makhnev, I. M. Minakova, “Ob avtomorfizmakh grafov s $\lambda=1$, $\mu=2$”, Diskret. matem., 16:1 (2004), 95–104 | MR | Zbl

[3] A. A. Makhnev, “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskret. analiz issled. oper., 3:3 (1996), 71–83 | MR | Zbl

[4] R. C. Bose, T. A. Dowling, “A generalization of Moore graphs of diameter two”, J. Comb. Theory, Ser. B, 11 (1971) | DOI | MR | Zbl

[5] P. Cameron, Permutation groups, Lond. Math. Soc. St. Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[6] S. Payne, J. Thas, Finite generalized quadrangles, Res. Notes Math., 110, Pitman Adv. Publ. Prog., Boston, 1984 | MR | Zbl

[7] H. A. Wilbrink, A. E. Brouwer, “A (57,14,1) strongly regular graph does not exist”, Indag. Math., 45 (1983), 117–121 | MR | Zbl

[8] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | MR