Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2006_45_5_a4, author = {A. A. Makhnev and M. S. Nirova}, title = {Slender partial quadrangles and their automorphisms}, journal = {Algebra i logika}, pages = {603--619}, publisher = {mathdoc}, volume = {45}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2006_45_5_a4/} }
A. A. Makhnev; M. S. Nirova. Slender partial quadrangles and their automorphisms. Algebra i logika, Tome 45 (2006) no. 5, pp. 603-619. http://geodesic.mathdoc.fr/item/AL_2006_45_5_a4/
[1] P. Cameron, “Partial quadrangles”, Q. J. Math. Oxf. II. Ser., 26 (1975), 61–73 | DOI | MR | Zbl
[2] A. A. Makhnev, I. M. Minakova, “Ob avtomorfizmakh grafov s $\lambda=1$, $\mu=2$”, Diskret. matem., 16:1 (2004), 95–104 | MR | Zbl
[3] A. A. Makhnev, “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskret. analiz issled. oper., 3:3 (1996), 71–83 | MR | Zbl
[4] R. C. Bose, T. A. Dowling, “A generalization of Moore graphs of diameter two”, J. Comb. Theory, Ser. B, 11 (1971) | DOI | MR | Zbl
[5] P. Cameron, Permutation groups, Lond. Math. Soc. St. Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[6] S. Payne, J. Thas, Finite generalized quadrangles, Res. Notes Math., 110, Pitman Adv. Publ. Prog., Boston, 1984 | MR | Zbl
[7] H. A. Wilbrink, A. E. Brouwer, “A (57,14,1) strongly regular graph does not exist”, Indag. Math., 45 (1983), 117–121 | MR | Zbl
[8] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | MR