Finite groups with an almost regular automorphism of order four
Algebra i logika, Tome 45 (2006) no. 5, pp. 575-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

P. Shumyatsky's question 11.126 in the “Kourovka Notebook” is answered in the affirmative: it is proved that there exist a constant $c$ and a function of a positive integer argument $f(m)$ such that if a finite group $G$ admits an automorphism $\varphi$ of order 4 having exactly $m$ fixed points, then $G$ has a normal series $G\geqslant H\geqslant N$ such that $|G/H|\leqslant f(m)$, the quotient group $H/N$ is nilpotent of class $\leqslant 2$, and the subgroup $N$ is nilpotent of class $\leqslant c$ (Thm. 1). As a corollary we show that if a locally finite group $G$ contains an element of order 4 with finite centralizer of order $m$, then $G$ has the same kind of a series as in Theorem 1. Theorem 1 generalizes Kovác's theorem on locally finite groups with a regular automorphism of order 4, whereby such groups are center-by-metabelian. Earlier, the first author proved that a finite 2-group with an almost regular automorphism of order 4 is almost center-by-metabelian. The proof of Theorem 1 is based on the author's previous works dealing in Lie rings with an almost regular automorphism of order 4. Reduction to nilpotent groups is carried out by using Hall-Higman type theorems. The proof also uses Theorem 2, which is of independent interest, stating that if a finite group $S$ contains a nilpotent subgroup $T$ of class $c$ and index $|S:T|=n$, then $S$ contains also a characteristic nilpotent subgroup of class $\leqslant c$ whose index is bounded in terms of $n$ and $c$. Previously, such an assertion has been known for Abelian subgroups, that is, for $c=1$.
Keywords: finite group, almost regular automorphism, Lie ring, nilpotency class, centralizer, Hall-Higman type theorems, characteristic subgroup.
@article{AL_2006_45_5_a3,
     author = {N. Yu. Makarenko and E. I. Khukhro},
     title = {Finite groups with an almost regular automorphism of order four},
     journal = {Algebra i logika},
     pages = {575--602},
     publisher = {mathdoc},
     volume = {45},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_5_a3/}
}
TY  - JOUR
AU  - N. Yu. Makarenko
AU  - E. I. Khukhro
TI  - Finite groups with an almost regular automorphism of order four
JO  - Algebra i logika
PY  - 2006
SP  - 575
EP  - 602
VL  - 45
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_5_a3/
LA  - ru
ID  - AL_2006_45_5_a3
ER  - 
%0 Journal Article
%A N. Yu. Makarenko
%A E. I. Khukhro
%T Finite groups with an almost regular automorphism of order four
%J Algebra i logika
%D 2006
%P 575-602
%V 45
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_5_a3/
%G ru
%F AL_2006_45_5_a3
N. Yu. Makarenko; E. I. Khukhro. Finite groups with an almost regular automorphism of order four. Algebra i logika, Tome 45 (2006) no. 5, pp. 575-602. http://geodesic.mathdoc.fr/item/AL_2006_45_5_a3/

[1] Nereshennye voprosy teorii grupp, Kourovskaya tetrad, 11-e izd., In-t matem. SO RAN, Novosibirsk, 1990

[2] N. Yu. Makarenko, E. I. Khukhro, “Koltsa Li, dopuskayuschie avtomorfizm poryadka 4 s malym chislom nepodvizhnykh tochek”, Algebra i logika, 35:1 (1996), 41–78 | MR

[3] N. Yu. Makarenko, E. I. Khukhro, “Nilpotentnye gruppy, dopuskayuschie pochti regulyarnyi avtomorfizm poryadka 4”, Algebra i logika, 35:3 (1996), 314–333 | MR | Zbl

[4] N. Yu. Makarenko, E. I. Khukhro, “Koltsa Li, dopuskayuschie avtomorfizm poryadka 4 s malym chislom nepodvizhnykh tochek II”, Algebra i logika, 37:2 (1998), 144–166 | MR | Zbl

[5] N. Yu. Makarenko, “O nilpotentnykh 2-gruppakh, dopuskayuschikh avtomorfizm poryadka 4 s malym chislom nepodvizhnykh tochek”, Algebra i logika, 32:4 (1993), 402–427 | MR | Zbl

[6] N. Yu. Makarenko, “Konechnye 2-gruppy s avtomorfizmom poryadka 4”, Algebra i logika, 40:1 (2001), 83–96 | MR | Zbl

[7] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[8] N. Yu. Makarenko, E. I. Khukhro, Kharakteristicheskie podgruppy, udovletvoryayuschie kommutatornomu tozhdestvu, 2006

[9] J. L. Alperin, G. Glauberman, “Limits of Abelian subgroups of finite $p$-groups”, J. Algebra, 203:2 (1998), 533–566 | DOI | MR | Zbl

[10] G. Glauberman, “Large subgroups of small class in finite $p$-groups”, J. Algebra, 272:1 (2004), 128–153 | DOI | MR | Zbl

[11] G. Glauberman, “Abelian subgroups of small index in finite $p$-groups”, J. Group Theory, 8:5 (2005), 539–560 | DOI | MR | Zbl

[12] L. G. Kovacs, “Groups with regular automorphisms of order four”, Math. Z., 75 (1961), 277–294 | DOI | MR | Zbl

[13] J. Thompson, “Finite groups with fixed-point-free automorphosms of prime order”, Proc. Natl. Acad. Sci. USA, 45 (1959), 578–581 | DOI | MR | Zbl

[14] J. Thompson, “Automorphisms of solvable groups”, J. Algebra, 1 (1964), 259–267 | DOI | MR | Zbl

[15] A. Turull, “Fitting height of groups and of fixed points”, J. Algebra, 86 (1984), 555–566 | DOI | MR | Zbl

[16] B. Hartley, I. M. Isaacs, “On characters and fixed points of coprime operator groups”, J. Algebra, 131:1 (1990), 342–358 | DOI | MR | Zbl

[17] S. D. Bell, B. Hartley, “A note on fixed-point-free actions of finite groups”, Q. J. Math., Oxf. II. Ser., 41:162 (1990), 127–130 | DOI | MR | Zbl

[18] E. C. Dade, “Carter subgroups and Fitting heights of finite solvable groups”, Ill. J. Math., 13 (1969), 449–514 | MR | Zbl

[19] B. Hartley, V. Turau, “Finite soluble groups admitting an automorphism of prime power order with few fixed points”, Math. Proc. Camb. Philos. Soc., 102 (1987), 431–441 | DOI | MR | Zbl

[20] G. Higman, “Groups and rings which have automorphisms without non-trivial fixed elements”, J. Lond. Math. Soc., 32 (1957), 321–334 | DOI | MR | Zbl

[21] V. A. Kreknin, A. I. Kostrikin, “Algebry Li s regulyarnymi avtomorfizmami”, DAN SSSR, 149:2 (1963), 249–251 | MR | Zbl

[22] V. A. Kreknin, “Razreshimost algebr Li s regulyarnymi avtomorfizmami konechnogo perioda”, DAN SSSR, 150:3 (1963), 467–469 | MR | Zbl

[23] J. Alperin, “Automorphisms of solvable groups”, Proc. Am. Math. Soc., 13 (1962), 175–180 | DOI | MR | Zbl

[24] E. I. Khukhro, “Konechnye $p$-gruppy, dopuskayuschie avtomorfizm poryadka $p$ s malym chislom nepodvizhnykh tochek”, Matem. zametki, 38:5 (1985), 652–657 | MR | Zbl

[25] E. I. Khukhro, “Koltsa Li i gruppy, dopuskayuschie pochti regulyarnyi avtomorfizm prostogo poryadka”, Matem. sb., 181:9 (1990), 1207–1219

[26] N. Yu. Makarenko, “O pochti regulyarnykh avtomorfizmakh prostogo poryadka”, Sib. matem. zh., 33:5 (1992), 206–208 | MR | Zbl

[27] N. Yu. Makarenko, “O nilpotentnykh gruppakh s pochti regulyarnymi avtomorfizmami prostogo poryadka”, Sib. matem. zh., 35:3 (1994), 630–632 | MR | Zbl

[28] Yu. A. Medvedev, “Groups and Lie rings with almost regular automorphisms of prime order”, J. Algebra, 164:3 (1994), 877–885 | DOI | MR | Zbl

[29] E. I. Khukhro, Nilpotent groups and their automorphisms, Walter de Gruyter, Berlin, 1993 | MR | Zbl

[30] E. I. Khukhro, N. Yu. Makarenko, “Lie rings with almost regular automorphisms”, J. Algebra, 264:2 (2003), 641–664 | DOI | MR | Zbl

[31] N. Yu. Makarenko, E. I. Khukhro, “Almost solubility of Lie algebras with almost regular automorphisms”, J. Algebra, 277:1 (2004), 370–407 | DOI | MR | Zbl

[32] P. Fong, “On orders of finite groups and centralizers of $p$-elements”, Osaka J. Math., 13 (1976), 483–489 | MR | Zbl

[33] D. Gorenstein, Finite groups, Harper and Row, New York, 1968 | MR | Zbl

[34] B. Hartley, T. Meixner, “Periodic groups in which the centralizer of an involution has bounded order”, J. Algebra, 64 (1980), 285–291 | DOI | MR | Zbl