Index sets of computable structures
Algebra i logika, Tome 45 (2006) no. 5, pp. 538-574

Voir la notice de l'article provenant de la source Math-Net.Ru

The index set of a computable structure $\mathcal A$ is the set of indices for computable copies of $\mathcal A$. We determine complexity of the index sets of various mathematically interesting structures including different finite structures, $\mathbb Q$-vector spaces, Archimedean real-closed ordered fields, reduced Abelian $p$-groups of length less than $\omega^2$, and models of the original Ehrenfeucht theory. The index sets for these structures all turn out to be $m$-complete $\Pi_n^0$, $d-\Sigma_n^0$, or $\Sigma_n^0$ , for various $n$. In each case the calculation involves finding an optimal sentence (i.e., one of simplest form) that describes the structure. The form of the sentence (computable $\Pi_n$, $d-\Sigma_n$, or $\Sigma_n$) yields a bound on the complexity of the index set. Whenever we show $m$-completeness of the index set, we know that the sentence is optimal. For some structures, the first sentence that comes to mind is not optimal, and another sentence of simpler form is shown to serve the purpose. For some of the groups, this involves Ramsey's theory.
Keywords: index set, computable structure, vector space, Archimedean real-closed ordered field, reduced Abelian $p$-group, Ehrenfeucht theory.
@article{AL_2006_45_5_a2,
     author = {W. Calvert and V. S. Harizanova and J. F. Knight and S. Miller},
     title = {Index sets of computable structures},
     journal = {Algebra i logika},
     pages = {538--574},
     publisher = {mathdoc},
     volume = {45},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_5_a2/}
}
TY  - JOUR
AU  - W. Calvert
AU  - V. S. Harizanova
AU  - J. F. Knight
AU  - S. Miller
TI  - Index sets of computable structures
JO  - Algebra i logika
PY  - 2006
SP  - 538
EP  - 574
VL  - 45
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_5_a2/
LA  - ru
ID  - AL_2006_45_5_a2
ER  - 
%0 Journal Article
%A W. Calvert
%A V. S. Harizanova
%A J. F. Knight
%A S. Miller
%T Index sets of computable structures
%J Algebra i logika
%D 2006
%P 538-574
%V 45
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_5_a2/
%G ru
%F AL_2006_45_5_a2
W. Calvert; V. S. Harizanova; J. F. Knight; S. Miller. Index sets of computable structures. Algebra i logika, Tome 45 (2006) no. 5, pp. 538-574. http://geodesic.mathdoc.fr/item/AL_2006_45_5_a2/