Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2006_45_5_a2, author = {W. Calvert and V. S. Harizanova and J. F. Knight and S. Miller}, title = {Index sets of computable structures}, journal = {Algebra i logika}, pages = {538--574}, publisher = {mathdoc}, volume = {45}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2006_45_5_a2/} }
W. Calvert; V. S. Harizanova; J. F. Knight; S. Miller. Index sets of computable structures. Algebra i logika, Tome 45 (2006) no. 5, pp. 538-574. http://geodesic.mathdoc.fr/item/AL_2006_45_5_a2/
[1] S. Lempp, T. Slaman, “The complexity of the index sets of \aleph_0-categorical theories and of Ehrenfeucht theories, to appear”, Adv. Logic (Proc. North Texas Logic Conf., October 8–10, 2004), Contemp. Math., Am. Math. Soc. (to appear) | MR
[2] B. F. Csima, A. Montalbán, R. A. Shore, “Boolean algebras, Tarski invariants, and index sets”, Notre Dame J. Formal Logic (to appear) | MR
[3] W. Calvert, “The isomorphism problem for computable Abelian $p$-groups of bounded length”, J. Symb. Log., 70:1 (2005), 331–345 | DOI | MR | Zbl
[4] W. Calvert, “The isomorphism problem for classes of computable fields”, Arch. Math. Log., 75:3 (2004), 327–336 | DOI | MR
[5] U. Kalvert, D. Kammins, Dzh. F. Nait, S. Miller, “Sravnenie klassov konechnykh struktur”, Algebra i logika, 43:6 (2004), 666–701 | MR
[6] S. S. Goncharov, Dzh. Nait, “Vychislimye strukturnye i antistrukturnye teoremy”, Algebra i logika, 41:6 (2002), 639–681 | MR | Zbl
[7] W. White, “On the complexity of categoricity in computable structures”, Math. Logic Quarterly, 49:6 (2003), 603–614 | DOI | MR | Zbl
[8] W. White, Characterizations for computable structures, PhD thesis LCornell Univ., 2000
[9] V. P. Dobritsa, “Slozhnost indeksnogo mnozhestva konstruktivnoi modeli”, Algebra i logika, 22:4 (1983), 269–276 | MR
[10] H. J. Keisler, Model theory for in.nitary logic, North-Holland, Amsterdam, 1971 | MR | Zbl
[11] D. E. Miller, “The invariant $\Pi^0_{\alpha}$ separation principle”, Trans. Am. Math. Soc., 242 (1978), 185–204 | DOI | MR | Zbl
[12] . A. W. Miller, “On the Borel classi.cation of the isomorphism class of a countable model”, Notre Dame J. Formal Logic, 24 (1983), 22–34 | DOI | MR | Zbl
[13] M. Nadel, “Scott sentences and admissible sets”, Ann. Math. Logic, 7 (1974), 267–294 | DOI | MR | Zbl
[14] W. Calvert, D. Cenzer, V. Harizanov, A. Morozov, $\Delta_2^0$ categoricity of Abelian $p$-groups
[15] R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Berlin, 1987 | MR
[16] I. Kaplansky, Infinite Abelian Groups, Univ. Michigan Publ. Math., 2, Univ. Michigan Press, Ann Arbor, 1954 | MR | Zbl
[17] E. Barker, “Back and forth relations for reduced Abelian $p$-groups”, Ann. Pure Appl. Logic, 75:3 (1995), 223–249 | DOI | MR | Zbl
[18] N. G. Khisamiev, “Constructive Abelian p-groups”, Sib. Adv. Math., 2:2 (1992), 68–113 | MR
[19] N. G. Khisamiev, “Constructive abelian groups, in: Handbook of recursive mathematics”, Yu. L.Ershov, S. S.Goncharov, A. Nerode, J.B.Remmel (ed.), v.2, Elsevier, Amsterdam, 1998, 1177–1230 | MR
[20] W. Hodges, A shorter model theory, Cambridge Univ. Press, Cambridge, 1997 | MR
[21] R. L. Vaught, “Denumerable models of complete theories”, Infinitistic Methods, Proc. Symp. Found. Math. (Warsaw 1959), Pergamon Press, 1961, 303–231 | MR