Conjugately dense subgroups of free products of groups with amalgamation
Algebra i logika, Tome 45 (2006) no. 5, pp. 520-537.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup having non-empty intersection with each class of conjugate elements of the group is said to be conjugately dense. It is shown that, under certain conditions, the number of conjugately dense subgroups in a free product with amalgamation is not less than some cardinal. As a consequence, P. Neumann's conjecture in the Kourovka notebook (Question 6.38) is refuted. It is also stated that a modular group and a non-Abelian group of countable or finite rank possess continuum many pairwise non-conjugate conjugately dense subgroups.
Keywords: linear group, free product with amalgamation, conjugately dense subgroup, field with discrete valuation.
@article{AL_2006_45_5_a1,
     author = {S. A. Zyubin},
     title = {Conjugately dense subgroups of free products of groups with amalgamation},
     journal = {Algebra i logika},
     pages = {520--537},
     publisher = {mathdoc},
     volume = {45},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_5_a1/}
}
TY  - JOUR
AU  - S. A. Zyubin
TI  - Conjugately dense subgroups of free products of groups with amalgamation
JO  - Algebra i logika
PY  - 2006
SP  - 520
EP  - 537
VL  - 45
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_5_a1/
LA  - ru
ID  - AL_2006_45_5_a1
ER  - 
%0 Journal Article
%A S. A. Zyubin
%T Conjugately dense subgroups of free products of groups with amalgamation
%J Algebra i logika
%D 2006
%P 520-537
%V 45
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_5_a1/
%G ru
%F AL_2006_45_5_a1
S. A. Zyubin. Conjugately dense subgroups of free products of groups with amalgamation. Algebra i logika, Tome 45 (2006) no. 5, pp. 520-537. http://geodesic.mathdoc.fr/item/AL_2006_45_5_a1/

[1] C. A. Zyubin, B. M. Levchuk, “Sopryazhenno plotnye podgruppy gruppy $GL_2(K)$ nad lokalno konechnym polem $K$”, Simmetriya i differentsialnye uravneniya, tr. mezhd. konf., Krasnoyarsk, 2000, 110–112

[2] Nereshennye voprosy teorii grupp, , In-t matem. SO RAN, Novosibirsk, 2006 http://www.math.nsc.ru/\sim alglog

[3] C. A. Zyubin, B.\M. Levchuk, “'Sopryazhenno plotnye podgruppy lokalno konechnykh grupp Shevalle lieva ranga 1”, Sib. matem. zh., 44:4 (2003), 742–748 | MR | Zbl

[4] S. A. Zyubin, “Conjugately dense subgroups of 3-dimensional linear groups over locally finite field”, Int. J. Alg. Comput., Proc. Conf. Gr. Theory (Gaeta, 2003) (to appear)

[5] S. A. Zyubin, Conjugatively dense subgroups of linear groups, Int. Conf. Gr. Theory, Gaeta, 2003

[6] Y. Ihara, “On diskrete subgroups of the two by two projective linear group over $p$-adic fields”, J. Math. Soc. Japan, 18 (1966), 219–235 | MR | Zbl

[7] Zh.-P. Serr, “Derevya, amalgamy i $SL_2$”, Matematika, period. sb. per. in. statei, 18:1,3–51 (1974), 2,3–27 | Zbl

[8] P. Lindon, P. Shupp, Kombinatornaya teriya grupp, Mir, M., 1980 | MR

[9] Obschaya algebra, t. 1, (pod obsch. red. L. A. Skornyakova), Nauka, M., 1990

[10] K. Kuratovskii, A. Mostovskii, Teoriya mnozhestv, Mir, M., 1970 | MR

[11] F. Klein, R. Fricke, Vorlesungen Ëuber die Theorie der elliptischen Modulfunktionen, Leipzig, 1890

[12] B. L. Van der Varden, Algebra, Nauka, M., 1979 | MR

[13] X. A. Doniyakhi, “Lineinoe predstavlenie svobodnogo proizvedeniya tsiklicheskikh grupp”, Uch. zap. LGU, ser. matem., 55:10 (1940), 219–235