Lattices Embeddable in Subsemigroup Lattices. II. Cancellative Semigroups
Algebra i logika, Tome 45 (2006) no. 4, pp. 436-446.

Voir la notice de l'article provenant de la source Math-Net.Ru

Repnitskii proved that any lattice embeds in a subsemigroup lattice of some commutative, cancellative, idempotent free semigroup with unique roots. In that proof, use is made of a result by Bredikhin and Schein stating that any lattice embeds in a suborder lattice of suitable partial order. Here, we present a direct proof of Repnitskii's result which is independent of Bredikhin–Schein's, thus giving the answer to the question posed by Shevrin and Ovsyannikov.
Keywords: commutative semigroup, subsemilattice lattice.
@article{AL_2006_45_4_a3,
     author = {M. V. Semenova},
     title = {Lattices {Embeddable} in {Subsemigroup} {Lattices.} {II.} {Cancellative} {Semigroups}},
     journal = {Algebra i logika},
     pages = {436--446},
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_4_a3/}
}
TY  - JOUR
AU  - M. V. Semenova
TI  - Lattices Embeddable in Subsemigroup Lattices. II. Cancellative Semigroups
JO  - Algebra i logika
PY  - 2006
SP  - 436
EP  - 446
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_4_a3/
LA  - ru
ID  - AL_2006_45_4_a3
ER  - 
%0 Journal Article
%A M. V. Semenova
%T Lattices Embeddable in Subsemigroup Lattices. II. Cancellative Semigroups
%J Algebra i logika
%D 2006
%P 436-446
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_4_a3/
%G ru
%F AL_2006_45_4_a3
M. V. Semenova. Lattices Embeddable in Subsemigroup Lattices. II. Cancellative Semigroups. Algebra i logika, Tome 45 (2006) no. 4, pp. 436-446. http://geodesic.mathdoc.fr/item/AL_2006_45_4_a3/

[1] L. N. Shevrin, A. Ja. Ovsyannikov, Semigroups and their subsemigroup lattices, Kluwer Academic publishers, Dordrecht, 1996 | MR | Zbl

[2] Ph. M. Whitman, “Lattices, equivalence relations, and subgroups”, Bull. Am. Math. Soc., 52 (1946), 507–522 | DOI | MR | Zbl

[3] D. Bredikhin, B. Schein, “Representation of ordered semigroups and lattices by binary relations”, Colloq. Math., 39 (1978), 1–12 | MR | Zbl

[4] M. V. Semënova, “O reshetkakh, vlozhimykh v reshetki podporyadkov”, Algebra i logika, 44:4 (2005), 483–511 | MR | Zbl

[5] V. B. Repnitskii, “O predstavlenii reshetok reshetkami podpolugrupp”, Izv. vuzov, Matem., 1996, no. 1, 60–70 | MR | Zbl

[6] M. V. Semënova, “O reshetkakh, vlozhimykh v reshetki podpolugrupp, I. Polureshetki”, Algebra i logika, 45:2 (2006), 215–230 | MR | Zbl

[7] M. V. Semënova, “O reshetkakh, vlozhimykh v reshetki podpolugrupp, III. Nilpotentnye polugruppy”, Sib. matem. zh., 48:1 (2007), 192–204 | MR

[8] M. Semenova, F. Wehrung, “Sublattices of lattices of order-convex sets, I. The main representation theorem”, J. Algebra, 277 (2004), 825–860 | DOI | MR | Zbl

[9] M. Semenova, F. Wehrung, “Sublattices of lattices of order-convex sets, II. Posets of finite length”, Int. J. Algebra Comput., 13:5 (2003), 543–564 | DOI | MR | Zbl

[10] M. Semenova, F. Wehrung, “Sublattices of lattices of order-convex sets, III. The case of totally ordered sets”, Int. J. Algebra Comput., 14 (2004), 357–387 | DOI | MR | Zbl

[11] F. Verung, M. V. Semenova, “Podreshetki reshetok vypuklykh podmnozhestv vektornykh prostranstv”, Algebra i logika, 43:3 (2004), 261–290 | MR

[12] M. V. Semënova, “Reshetki podporyadkov”, Sib. matem. zh., 40:3 (1999), 673–682 | MR | Zbl

[13] R. Freese, J. Ježek, J. B. Nation, Free lattices, Math. Surv. Monogr., 42, Am. Math. Soc., Providence, RI, 1995 | MR | Zbl

[14] G. Grätzer, General lattice theory, 2nd ed., Birkhäuser Verlag, Basel, 1998 | MR | Zbl