$\Delta_2^0$-Copies of Linear Orderings
Algebra i logika, Tome 45 (2006) no. 3, pp. 354-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for any $n\in\omega$, there exist countable linear orderings $L_n$ whose $\Delta_2^0$-spectrum consists of exactly all non $n$-low $\Delta_2^0$-degrees. Properties of such orderings are examined, for $n=1$ and $n=2$.
Keywords: countable linear ordering, $\Delta_2^0$-degree, $\Delta_2^0$-spectrum.
@article{AL_2006_45_3_a3,
     author = {A. N. Frolov},
     title = {$\Delta_2^0${-Copies} of {Linear} {Orderings}},
     journal = {Algebra i logika},
     pages = {354--370},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_3_a3/}
}
TY  - JOUR
AU  - A. N. Frolov
TI  - $\Delta_2^0$-Copies of Linear Orderings
JO  - Algebra i logika
PY  - 2006
SP  - 354
EP  - 370
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_3_a3/
LA  - ru
ID  - AL_2006_45_3_a3
ER  - 
%0 Journal Article
%A A. N. Frolov
%T $\Delta_2^0$-Copies of Linear Orderings
%J Algebra i logika
%D 2006
%P 354-370
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_3_a3/
%G ru
%F AL_2006_45_3_a3
A. N. Frolov. $\Delta_2^0$-Copies of Linear Orderings. Algebra i logika, Tome 45 (2006) no. 3, pp. 354-370. http://geodesic.mathdoc.fr/item/AL_2006_45_3_a3/

[1] R. I. Soare, Recursively enumerable sets and degrees, Springer–Verlag, Heidelberg, 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | MR | Zbl

[2] T. Slaman, “Relative to any nonrecursive”, Proc. Am. Math. Soc., 126:7 (1998), 2117–2122 | DOI | MR | Zbl

[3] S. Wehner, “Enumeration, countable structure and Turing degrees”, Proc. Am. Math. Soc., 126:7 (1998), 2131–2139 | DOI | MR | Zbl

[4] R. G. Downey, “On presentations of algebraic structures”, Complexity, logic, and recursion theory, Lect. Notes Pure Appl. Math., 187, ed. A. Sorbi (ed.), Marcel Dekker, New York, 1997, 157–205 | MR | Zbl

[5] R. Miller, “The $\Delta^0_2$ spectrum of a linear ordering”, J. Symb. Log., 66:2 (2001), 470–486 | DOI | MR | Zbl

[6] S. S. Goncharov, V. S. Harizanov, J. F. Knight, C. McCoy, R. Miller, R. Solomon, “Enumerations in computable structure theory” (to appear)

[7] R. G. Downey, J. F. Knight, “Orderings with $\alpha$-th jump degree $0^{(\alpha)}$”, Proc. Am. Math. Soc., 114:2 (1992), 545–552 | DOI | MR | Zbl

[8] R. Watnick, “A generalization of Tennenbaum's theorem on effectively finite recursive linear orderings”, J. Symb. Log., 49 (1984), 563–569 | DOI | MR | Zbl

[9] D. K. Roy, R. Watnik, “Finite condensations of recursive linear orderings”, Stud. Log., 47:4 (1988), 311–317 | DOI | MR | Zbl

[10] C. J. Ash, C. Jockusch, J. F. Knight, “Jumps of orderings”, Trans. Am. Math. Soc., 319:2 (1990), 573–599 | DOI | MR | Zbl

[11] R. G. Downey, M. F. Moses, “On choice sets and strongly nontrivial self-embeddings of recursive linear orderings”, Z. Math. Logik Grundlag. Math., 35:3 (1989), 237–246 | DOI | MR | Zbl

[12] R. G. Downey, C. G. Jockusch, “Every low Boolean algebra is isomorphic to a recursive one”, Proc. Am. Math. Soc., 122:3 (1994), 871–880 | DOI | MR | Zbl

[13] P. Alaev, A. Frolov, “Vychislimost na lineinykh poryadkakh, obogaschennykh predikatami” (to appear)