Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2006_45_3_a3, author = {A. N. Frolov}, title = {$\Delta_2^0${-Copies} of {Linear} {Orderings}}, journal = {Algebra i logika}, pages = {354--370}, publisher = {mathdoc}, volume = {45}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2006_45_3_a3/} }
A. N. Frolov. $\Delta_2^0$-Copies of Linear Orderings. Algebra i logika, Tome 45 (2006) no. 3, pp. 354-370. http://geodesic.mathdoc.fr/item/AL_2006_45_3_a3/
[1] R. I. Soare, Recursively enumerable sets and degrees, Springer–Verlag, Heidelberg, 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | MR | Zbl
[2] T. Slaman, “Relative to any nonrecursive”, Proc. Am. Math. Soc., 126:7 (1998), 2117–2122 | DOI | MR | Zbl
[3] S. Wehner, “Enumeration, countable structure and Turing degrees”, Proc. Am. Math. Soc., 126:7 (1998), 2131–2139 | DOI | MR | Zbl
[4] R. G. Downey, “On presentations of algebraic structures”, Complexity, logic, and recursion theory, Lect. Notes Pure Appl. Math., 187, ed. A. Sorbi (ed.), Marcel Dekker, New York, 1997, 157–205 | MR | Zbl
[5] R. Miller, “The $\Delta^0_2$ spectrum of a linear ordering”, J. Symb. Log., 66:2 (2001), 470–486 | DOI | MR | Zbl
[6] S. S. Goncharov, V. S. Harizanov, J. F. Knight, C. McCoy, R. Miller, R. Solomon, “Enumerations in computable structure theory” (to appear)
[7] R. G. Downey, J. F. Knight, “Orderings with $\alpha$-th jump degree $0^{(\alpha)}$”, Proc. Am. Math. Soc., 114:2 (1992), 545–552 | DOI | MR | Zbl
[8] R. Watnick, “A generalization of Tennenbaum's theorem on effectively finite recursive linear orderings”, J. Symb. Log., 49 (1984), 563–569 | DOI | MR | Zbl
[9] D. K. Roy, R. Watnik, “Finite condensations of recursive linear orderings”, Stud. Log., 47:4 (1988), 311–317 | DOI | MR | Zbl
[10] C. J. Ash, C. Jockusch, J. F. Knight, “Jumps of orderings”, Trans. Am. Math. Soc., 319:2 (1990), 573–599 | DOI | MR | Zbl
[11] R. G. Downey, M. F. Moses, “On choice sets and strongly nontrivial self-embeddings of recursive linear orderings”, Z. Math. Logik Grundlag. Math., 35:3 (1989), 237–246 | DOI | MR | Zbl
[12] R. G. Downey, C. G. Jockusch, “Every low Boolean algebra is isomorphic to a recursive one”, Proc. Am. Math. Soc., 122:3 (1994), 871–880 | DOI | MR | Zbl
[13] P. Alaev, A. Frolov, “Vychislimost na lineinykh poryadkakh, obogaschennykh predikatami” (to appear)