Primitive Connected and Additive Theories of Polygons
Algebra i logika, Tome 45 (2006) no. 3, pp. 300-313.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study into monoids $S$ the class of all $S$-polygons over which is primitive normal, primitive connected, or additive, that is, the monoids $S$ the theory of any $S$-polygon over which is primitive normal, primitive connected, or additive. It is proved that the class of all $S$-polygons is primitive normal iff $S$ is a linearly ordered monoid, and that it is primitive connected iff $S$ is a group. It is pointed out that there exists no monoid $S$ with an additive class of all $S$-polygons.
Keywords: primitive connected theory, additive theory
Mots-clés : polygon.
@article{AL_2006_45_3_a1,
     author = {A. A. Stepanova},
     title = {Primitive {Connected} and {Additive} {Theories} of {Polygons}},
     journal = {Algebra i logika},
     pages = {300--313},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_3_a1/}
}
TY  - JOUR
AU  - A. A. Stepanova
TI  - Primitive Connected and Additive Theories of Polygons
JO  - Algebra i logika
PY  - 2006
SP  - 300
EP  - 313
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_3_a1/
LA  - ru
ID  - AL_2006_45_3_a1
ER  - 
%0 Journal Article
%A A. A. Stepanova
%T Primitive Connected and Additive Theories of Polygons
%J Algebra i logika
%D 2006
%P 300-313
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_3_a1/
%G ru
%F AL_2006_45_3_a1
A. A. Stepanova. Primitive Connected and Additive Theories of Polygons. Algebra i logika, Tome 45 (2006) no. 3, pp. 300-313. http://geodesic.mathdoc.fr/item/AL_2006_45_3_a1/

[1] E. A. Palyutin, “Primitivno svyaznye teorii”, Algebra i logika, 39:2 (2000), 145–169 | MR | Zbl

[2] E. A. Palyutin, “Additive theories”, Proc. Logic Colloq.'98 Prague, Lect. Notes Math. Logic, 13, ASL, Massachusetts, 2000, 352–356 | MR

[3] T. G. Mustafin, “O stabilnostnoi teorii poligonov”, Teoriya modelei i ee primenenie, Tr. in-ta matem. SO AN SSSR, 8, Nauka, Novosibirsk, 1988, 92–107 | MR