Some Properties of General Linear Supergroups and of Schur Superalgebras
Algebra i logika, Tome 45 (2006) no. 3, pp. 257-299.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the category of rational supermodules over a general linear supergroup is a highest weight category. More exactly, we construct superanalogs of the theory of modules with good filtration and of the dual theory of modules with Weyl's. Using these, we show that indecomposable injective supermodules have good filtration of a certain kind.
Keywords: countable linear ordering, $\Delta_2^0$-degree, $\Delta_2^0$-spectrum.
@article{AL_2006_45_3_a0,
     author = {A. N. Zubkov},
     title = {Some {Properties} of {General} {Linear} {Supergroups} and of {Schur} {Superalgebras}},
     journal = {Algebra i logika},
     pages = {257--299},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_3_a0/}
}
TY  - JOUR
AU  - A. N. Zubkov
TI  - Some Properties of General Linear Supergroups and of Schur Superalgebras
JO  - Algebra i logika
PY  - 2006
SP  - 257
EP  - 299
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_3_a0/
LA  - ru
ID  - AL_2006_45_3_a0
ER  - 
%0 Journal Article
%A A. N. Zubkov
%T Some Properties of General Linear Supergroups and of Schur Superalgebras
%J Algebra i logika
%D 2006
%P 257-299
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_3_a0/
%G ru
%F AL_2006_45_3_a0
A. N. Zubkov. Some Properties of General Linear Supergroups and of Schur Superalgebras. Algebra i logika, Tome 45 (2006) no. 3, pp. 257-299. http://geodesic.mathdoc.fr/item/AL_2006_45_3_a0/

[1] I. Schur, “Uber eine klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen”, Gesammelte Abhandlungen I, Springer–Verlag, Berlin, 1973, 1–70

[2] I. Schur, “Uber die rationalen darstellungen der allgemeinen linearen Gruppen”, Gesammelte Abhandlungen I, Springer–Verlag, Berlin, 1973, 65–85

[3] J. A. Green, Polynomial representations of $GL_n$, Lect. Not. Math., 830, Springer–Verlag, Berlin etc., 1980 | MR | Zbl

[4] S. Donkin, “On Schur algebras and related algebras. I”, J. Algebra, 104:2 (1986), 310–328 | DOI | MR | Zbl

[5] B. Parshall, J. Wang, Quantum linear groups, Mem. Am. Math. Soc., 439, Am. Math. Soc, Providence, RI, 1991 | MR | Zbl

[6] S. Donkin, The $q$-Schur algebras, London Math. Soc., Lect. Note Ser., 253, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[7] N. J. Muir, Polynomial representations of the general linear Lie superalgebras, Ph. D. Thesis, Univ. London, 1991

[8] E. Cline, B. Parshall, L. Scott, “Finite dimensional algebras and highest weight categories”, J. Reine Angew. Math., 391 (1988), 85–99 | MR | Zbl

[9] C. M. Ringel, “The category of modules with good .ltration over a quasihereditary algebra has almost split sequences”, Math. Z., 208:2 (1991), 209–224 | DOI | MR

[10] F. Marko, A. N. Zubkov, “Schur superalgebras in characteristic $p$, II”, Bull. London Math. Soc. (to appear) | MR

[11] A. N. Zubkov, “Podalgebry Borelya superalgebr Shura”, Algebra i logika, 44:3 (2005), 305–334 | MR | Zbl

[12] S. Donkin, Rational representations of algebraic groups: tensor products and filtrations, Lect. Notes Math., 1140, Springer–Verlag, Berlin etc., 1985 | MR | Zbl

[13] O. Mathieu, “Filtrations of $G$-modules”, Ann. Sci. Éc. Norm. Supér., IV. Sér., 23:4 (1990), 625–644 | MR | Zbl

[14] M. E. Sweedler, Hopf algebras, W. A.Benjamin, Inc., New York, 1969 | MR | Zbl

[15] S. Donkin, “Standard homological properties for quantum $GL_n$”, J. Algebra, 181:1 (1996), 235–266 | DOI | MR | Zbl

[16] S. Donkin, “Symmetric and exterior powers, linear source modules and representations of Schur superalgebras”, Proc. Lond. Math. Soc., III. Ser., 83:3 (2001), 647–680 | DOI | MR | Zbl

[17] S. Donkin, “Hopf complements and injective comodules for algebraic groups”, Proc. Lond. Math. Soc., III. Ser., 40 (1980), 298–319 | DOI | MR | Zbl

[18] J. Jantzen, Representations of algebraic groups, Pure Appl. Math., 131, Academic Press, Boston etc., 1987 | MR | Zbl

[19] S. I. Gelfand, Yu. I. Manin, Metody gomologicheskoi algebry, t. I, Nauka, M., 1988 | MR

[20] J. Brundan, J. Kujawa, A new proof of the Mullineux conjecture, preprint | MR

[21] J. Brundan, A. Kleshev, “Modular representations of the supergroup $Q(n)$. I”, J. Algebra (to appear)

[22] J. A. Green, “Locally finite representations”, J. Algebra, 41:1 (1976), 137–171 | DOI | MR | Zbl

[23] D. Woodcock, “Schur algebras and global bases: new proofs of old vanishing theorems”, J. Algebra, 191:1 (1997), 331–370 | DOI | MR | Zbl

[24] F. A. Berezin, Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983 | MR

[25] I. B. Penkov, “Teoriya Borelya-Veilya-Botta dlya klassicheskikh supergrupp Li”, Itogi nauki i tekhn. Sovrem. probl. mat. Nov. dostizh, 32, VINITI, M., 1988, 71–124 | MR

[26] V. G. Kac, “Representations of classical Lie superalgebras”, Differ. geom. Meth. math. Phys. II, Proc. (Bonn 1977), Lect. Notes Math., 676, 1978, 597–626 | MR | Zbl

[27] A. Berele, A. Regev, “Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras”, Adv. Math., 64:2 (1987), 118–175 | DOI | MR | Zbl

[28] S. Donkin, “The tilting modules for algebraic groups”, Math. Z., 212:1 (1993), 39–60 | DOI | MR | Zbl

[29] K. Akin, D. A. Buchsbaum, J. Weyman, “Schur functors and Schur complexes”, Adv. Math., 44:3 (1982), 207–278 | DOI | MR | Zbl