Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2006_45_3_a0, author = {A. N. Zubkov}, title = {Some {Properties} of {General} {Linear} {Supergroups} and of {Schur} {Superalgebras}}, journal = {Algebra i logika}, pages = {257--299}, publisher = {mathdoc}, volume = {45}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2006_45_3_a0/} }
A. N. Zubkov. Some Properties of General Linear Supergroups and of Schur Superalgebras. Algebra i logika, Tome 45 (2006) no. 3, pp. 257-299. http://geodesic.mathdoc.fr/item/AL_2006_45_3_a0/
[1] I. Schur, “Uber eine klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen”, Gesammelte Abhandlungen I, Springer–Verlag, Berlin, 1973, 1–70
[2] I. Schur, “Uber die rationalen darstellungen der allgemeinen linearen Gruppen”, Gesammelte Abhandlungen I, Springer–Verlag, Berlin, 1973, 65–85
[3] J. A. Green, Polynomial representations of $GL_n$, Lect. Not. Math., 830, Springer–Verlag, Berlin etc., 1980 | MR | Zbl
[4] S. Donkin, “On Schur algebras and related algebras. I”, J. Algebra, 104:2 (1986), 310–328 | DOI | MR | Zbl
[5] B. Parshall, J. Wang, Quantum linear groups, Mem. Am. Math. Soc., 439, Am. Math. Soc, Providence, RI, 1991 | MR | Zbl
[6] S. Donkin, The $q$-Schur algebras, London Math. Soc., Lect. Note Ser., 253, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl
[7] N. J. Muir, Polynomial representations of the general linear Lie superalgebras, Ph. D. Thesis, Univ. London, 1991
[8] E. Cline, B. Parshall, L. Scott, “Finite dimensional algebras and highest weight categories”, J. Reine Angew. Math., 391 (1988), 85–99 | MR | Zbl
[9] C. M. Ringel, “The category of modules with good .ltration over a quasihereditary algebra has almost split sequences”, Math. Z., 208:2 (1991), 209–224 | DOI | MR
[10] F. Marko, A. N. Zubkov, “Schur superalgebras in characteristic $p$, II”, Bull. London Math. Soc. (to appear) | MR
[11] A. N. Zubkov, “Podalgebry Borelya superalgebr Shura”, Algebra i logika, 44:3 (2005), 305–334 | MR | Zbl
[12] S. Donkin, Rational representations of algebraic groups: tensor products and filtrations, Lect. Notes Math., 1140, Springer–Verlag, Berlin etc., 1985 | MR | Zbl
[13] O. Mathieu, “Filtrations of $G$-modules”, Ann. Sci. Éc. Norm. Supér., IV. Sér., 23:4 (1990), 625–644 | MR | Zbl
[14] M. E. Sweedler, Hopf algebras, W. A.Benjamin, Inc., New York, 1969 | MR | Zbl
[15] S. Donkin, “Standard homological properties for quantum $GL_n$”, J. Algebra, 181:1 (1996), 235–266 | DOI | MR | Zbl
[16] S. Donkin, “Symmetric and exterior powers, linear source modules and representations of Schur superalgebras”, Proc. Lond. Math. Soc., III. Ser., 83:3 (2001), 647–680 | DOI | MR | Zbl
[17] S. Donkin, “Hopf complements and injective comodules for algebraic groups”, Proc. Lond. Math. Soc., III. Ser., 40 (1980), 298–319 | DOI | MR | Zbl
[18] J. Jantzen, Representations of algebraic groups, Pure Appl. Math., 131, Academic Press, Boston etc., 1987 | MR | Zbl
[19] S. I. Gelfand, Yu. I. Manin, Metody gomologicheskoi algebry, t. I, Nauka, M., 1988 | MR
[20] J. Brundan, J. Kujawa, A new proof of the Mullineux conjecture, preprint | MR
[21] J. Brundan, A. Kleshev, “Modular representations of the supergroup $Q(n)$. I”, J. Algebra (to appear)
[22] J. A. Green, “Locally finite representations”, J. Algebra, 41:1 (1976), 137–171 | DOI | MR | Zbl
[23] D. Woodcock, “Schur algebras and global bases: new proofs of old vanishing theorems”, J. Algebra, 191:1 (1997), 331–370 | DOI | MR | Zbl
[24] F. A. Berezin, Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983 | MR
[25] I. B. Penkov, “Teoriya Borelya-Veilya-Botta dlya klassicheskikh supergrupp Li”, Itogi nauki i tekhn. Sovrem. probl. mat. Nov. dostizh, 32, VINITI, M., 1988, 71–124 | MR
[26] V. G. Kac, “Representations of classical Lie superalgebras”, Differ. geom. Meth. math. Phys. II, Proc. (Bonn 1977), Lect. Notes Math., 676, 1978, 597–626 | MR | Zbl
[27] A. Berele, A. Regev, “Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras”, Adv. Math., 64:2 (1987), 118–175 | DOI | MR | Zbl
[28] S. Donkin, “The tilting modules for algebraic groups”, Math. Z., 212:1 (1993), 39–60 | DOI | MR | Zbl
[29] K. Akin, D. A. Buchsbaum, J. Weyman, “Schur functors and Schur complexes”, Adv. Math., 44:3 (1982), 207–278 | DOI | MR | Zbl