Lattices Embeddable in Subsemigroup Lattices. I. Semilattices
Algebra i logika, Tome 45 (2006) no. 2, pp. 215-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

V. B. Repnitskii showed that any lattice embeds in some subsemilattice lattice. In his proof, use was made of a result by D. Bredikhin and B. Schein, stating that any lattice embeds in the suborder lattice of a suitable partial order. We present a direct proof of Repnitskii's result, which is independent of Bredikhin–Schein's, giving the answer to a question posed by L. N. Shevrin and A. J. Ovsyannikov. We also show that a finite lattice is lower bounded iff it is isomorphic to the lattice of subsemilattices of a finite semilattice that are closed under a distributive quasiorder.
Keywords: lattice, subsemilattice lattice, lower bounded lattice, partial order.
@article{AL_2006_45_2_a4,
     author = {M. V. Semenova},
     title = {Lattices {Embeddable} in {Subsemigroup} {Lattices.} {I.} {Semilattices}},
     journal = {Algebra i logika},
     pages = {215--230},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_2_a4/}
}
TY  - JOUR
AU  - M. V. Semenova
TI  - Lattices Embeddable in Subsemigroup Lattices. I. Semilattices
JO  - Algebra i logika
PY  - 2006
SP  - 215
EP  - 230
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_2_a4/
LA  - ru
ID  - AL_2006_45_2_a4
ER  - 
%0 Journal Article
%A M. V. Semenova
%T Lattices Embeddable in Subsemigroup Lattices. I. Semilattices
%J Algebra i logika
%D 2006
%P 215-230
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_2_a4/
%G ru
%F AL_2006_45_2_a4
M. V. Semenova. Lattices Embeddable in Subsemigroup Lattices. I. Semilattices. Algebra i logika, Tome 45 (2006) no. 2, pp. 215-230. http://geodesic.mathdoc.fr/item/AL_2006_45_2_a4/

[1] L. N. Shevrin, A. J. Ovsyannikov, Semigroups and their subsemigroup lattices, Kluwer Academic Publ., Dordrecht, 1996 | MR | Zbl

[2] Ph. M. Whitman, “Lattices, equivalence relations, and subgroups”, Bull. Am. Math. Soc., 52 (1946), 507–522 | DOI | MR | Zbl

[3] D. Bredikhin, B. Schein, “Representation of ordered semigroups and lattices by binary relations”, Colloq. Math., 39 (1978), 1–12 | MR | Zbl

[4] M. V. Semënova, “O reshëtkakh, vlozhimykh v reshëtki podporyadkov”, Algebra i logika, 44:4 (2005), 483–511 | MR | Zbl

[5] V. B. Repnitskii, “O predstavlenii reshëtok reshëtkami podpolugrupp”, Izv. vuzov, Matem., 1996, no. 1(404), 60–70 | MR

[6] M. V. Semënova, “O reshëtkakh, vlozhimykh v reshëtki podpolugrupp, II. Polugruppy s sokrascheniem”, Algebra i logika, 45:4 (2006), 436–446 | MR

[7] M. V. Semënova, “O reshëtkakh, vlozhimykh v reshëtki podpolugrupp, III. Nilpotentnye polugruppy”, Sib. matem. zh., 48:1 (2007), 192–204 | MR

[8] M. Semenova, F. Wehrung, “Sublattices of lattices of order-convex sets, I. The main representation theorem”, J. Algebra, 277 (2004), 825–860 | DOI | MR | Zbl

[9] M. Semenova, F. Wehrung, “Sublattices of lattices of order-convex sets, II. Posets of .nite length”, Int. J. Algebra Comput., 13:5 (2003), 543–564 | DOI | MR | Zbl

[10] M. Semenova, F. Wehrung, “Sublattices of lattices of order-convex sets, III. The case of totally ordered sets”, Int. J. Algebra Comput., 14 (2004), 357–387 | DOI | MR | Zbl

[11] F. Verung, M. V. Semënova, “Podreshëtki reshëtok vypuklykh podmnozhestv vektornykh prostranstv”, Algebra i logika, 43:3 (2004), 261–290 | MR

[12] M. V. Semënova, “Reshëtki podporyadkov”, Sib. matem. zh., 40:3 (1999), 673–682 | MR | Zbl

[13] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl

[14] R. Freese, J.Ježek, J. B. Nation, Free lattices, Math. Surv. Monogr., 42, Am. Math. Soc., Providence, RI, 1995 | MR | Zbl

[15] K. V. Adaricheva, “Two embedding theorems for lower bounded lattices”, Algebra Univers., 36:4 (1996), 425–430 | DOI | MR | Zbl

[16] V. B. Repnitski\v{i}, “On finite lattices which are embeddable in subsemigroup lattices”, Semigroup Forum, 46:3 (1993), 388–397 | DOI | MR | Zbl