Braid Groups in Genetic Code
Algebra i logika, Tome 45 (2006) no. 2, pp. 131-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every genetic code with finitely many generators and at most one relation, a braid group is introduced. The construction presented includes the braid group of a plane, braid groups of closed oriented surfaces, Artin–Brieskorn braid groups of series $B$, and allows us to study all of these groups from a unified standpoint. We clarify how braid groups in genetic code are structured, construct words in the normal form, look at torsion, and compute width of verbal subgroups. It is also stated that the system of defining relations for a braid group in two-dimensional manifolds presented in a paper by Scott is inconsistent.
Keywords: braid group in genetic code, system of defining relations.
@article{AL_2006_45_2_a0,
     author = {V. G. Bardakov},
     title = {Braid {Groups} in {Genetic} {Code}},
     journal = {Algebra i logika},
     pages = {131--158},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_2_a0/}
}
TY  - JOUR
AU  - V. G. Bardakov
TI  - Braid Groups in Genetic Code
JO  - Algebra i logika
PY  - 2006
SP  - 131
EP  - 158
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_2_a0/
LA  - ru
ID  - AL_2006_45_2_a0
ER  - 
%0 Journal Article
%A V. G. Bardakov
%T Braid Groups in Genetic Code
%J Algebra i logika
%D 2006
%P 131-158
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_2_a0/
%G ru
%F AL_2006_45_2_a0
V. G. Bardakov. Braid Groups in Genetic Code. Algebra i logika, Tome 45 (2006) no. 2, pp. 131-158. http://geodesic.mathdoc.fr/item/AL_2006_45_2_a0/

[1] E. Briskorn, K. Saito, “Gruppy Artina i gruppy Kokstera”, Matematika. Sb. perevodov, 18:6 (1974), 56–79

[2] V. Ya. Lin, “Kosy Artina i svyazannye s nimi gruppy i prostranstva”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 17, VINITI, M., 1979, 159–227 | MR

[3] V. A. Vasilev, Topologiya dopolnenii k diskriminantam, Fazis, M., 1997 | MR

[4] P. Karte, “Novye dostizheniya v teorii grupp kos. Primeneniya v topologii i algebre”, Trudy seminara N. Burbaki za 1990, Mir, M., 1996, 14–49

[5] J. S. Birman, “New points of view in knot theory”, Bull. Am. Math. Soc., New Ser., 28:2 (1993), 253–287 | DOI | MR | Zbl

[6] L. H. Kauffman, “Virtual knot theory”, Eur. J. Comb., 20:7 (1999), 663–690 | DOI | MR | Zbl

[7] V. V. Vershinin, “Gruppy kos i prostranstva petel”, Uspekhi matem. n., 54:2 (1999), 3–84 | MR | Zbl

[8] R. Fenn, R. Rimányi, C. Rourke, “The braid-permutation group”, Topology, 36:1 (1997), 123–135 | DOI | MR | Zbl

[9] V. G. Bardakov, “The virtual and universal braids”, Fundam. Math., 184 (2004), 1–18 | DOI | MR | Zbl

[10] V. F. R. Jones, “Hecke algebra representations of braid groups and link polynomials”, Ann. Math., 126:2 (1987), 335–388 | DOI | MR | Zbl

[11] S. Bigelow, “Braid groups are linear”, J. Am. Math. Soc., 14:2 (2001), 471–486 | DOI | MR | Zbl

[12] D. Krammer, “Braid groups are linear”, Ann. Math., 155:1 (2002), 131–156 | DOI | MR | Zbl

[13] P. Dehornoy, “From large cardinals to braids via distributive algebra”, J. Knot Theory Ramifications, 4:1 (1995), 33–79 | DOI | MR | Zbl

[14] M. Atya, “Invarianty Dzhonsa–Vittena dlya uzlov”, Tr. semin. N. Burbaki za 1990, Mir, M., 1996, 6–13

[15] M. Atya, Geometriya i fizika uzlov, Fazis, M., 1997

[16] O. Zariski, “The topological discriminant group of a riemann surface of genus $p$”, Am. J. Math., 59:2 (1937), 335–358 | DOI | MR | Zbl

[17] G. P. Scott, “Braids groups and the group of homeomorphisms of a surface”, Proc. Camb. Phil. Soc., 68 (1970), 605–617 | DOI | MR | Zbl

[18] R. Gillette, J. Buskirk, “The word problem and consequences for the braid groups and mapping class groups of the 2-sphere”, Trans. Am. Math. Soc., 131:2 (1968), 277–296 | DOI | MR | Zbl

[19] E. Fadell, J. Van Buskirk, “The braid groups of $E^2$ and $S^2$”, Duke. Math. J., 29:2 (1961), 243–258 | DOI | MR

[20] J. Van Buskirk, “Braid groups of compact 2-manifolds with elements of finite order”, Trans. Am. Math. Soc., 122:1 (1966), 81–97 | DOI | MR | Zbl

[21] J. González-Meneses, “New presentations of surface braid groups”, J. Knot Theory Ramifications, 10:3 (2001), 431–451 | DOI | MR | Zbl

[22] P. Bellingeri, “On presentation of surface braids”, J. Algebra, 274:2 (2004), 543–563 | DOI | MR | Zbl

[23] P. Bellingeri, E. Godelle, Questions on surface braid groups, Preprint, Univ. de Caen, CNRS UMR 6139, 2005-15

[24] V. G. Bardakov, M. V. Neschadim, “Nekotorye svoistva grupp kos kompaktnykh orientiruemykh 2-mnogoobrazii”, IV Mezhd. algebr. konf., posvyasch. 60-letiyu prof. Yu. I. Merzlyakova, Novosibirsk, 2000

[25] J. S. Birman, Braids, links and mapping class group, Univ. press, Princeton–Tokyo, 1974 | MR | Zbl

[26] A. A. Markov, “Osnovy algebraicheskoi teorii kos”, Tr. MIAN, 16, 1945, 1–54 | MR | Zbl

[27] N. Burbaki, Gruppy i algebry Li, gl. IV–VI, Mir, M., 1972 | MR | Zbl

[28] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, 4-e izd., Nauka, M., 1996 | MR | Zbl

[29] G. S. Kokseter, U. O. Mozer, Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980 | MR

[30] V. G. Bardakov, “K teorii grupp kos”, Matem. sb., 183:6 (1992), 3–42 | Zbl

[31] V. G. Bardakov, “Shirina verbalnykh podgrupp nekotorykh grupp Artina, Gruppovye i metricheskie svoistva otobrazhenii”, Sb. rabot, posvyasch. pamyati Yu. I. Merzlyakova, NGU, Novosibirsk, 1995, 8–18 | MR

[32] V. G. Bardakov, “O shirine verbalnykh podgrupp nekotorykh svobodnykh konstruktsii”, Algebra i logika, 36:5 (1997), 494–517 | MR | Zbl