Braid Groups in Genetic Code
Algebra i logika, Tome 45 (2006) no. 2, pp. 131-158

Voir la notice de l'article provenant de la source Math-Net.Ru

For every genetic code with finitely many generators and at most one relation, a braid group is introduced. The construction presented includes the braid group of a plane, braid groups of closed oriented surfaces, Artin–Brieskorn braid groups of series $B$, and allows us to study all of these groups from a unified standpoint. We clarify how braid groups in genetic code are structured, construct words in the normal form, look at torsion, and compute width of verbal subgroups. It is also stated that the system of defining relations for a braid group in two-dimensional manifolds presented in a paper by Scott is inconsistent.
Keywords: braid group in genetic code, system of defining relations.
@article{AL_2006_45_2_a0,
     author = {V. G. Bardakov},
     title = {Braid {Groups} in {Genetic} {Code}},
     journal = {Algebra i logika},
     pages = {131--158},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_2_a0/}
}
TY  - JOUR
AU  - V. G. Bardakov
TI  - Braid Groups in Genetic Code
JO  - Algebra i logika
PY  - 2006
SP  - 131
EP  - 158
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_2_a0/
LA  - ru
ID  - AL_2006_45_2_a0
ER  - 
%0 Journal Article
%A V. G. Bardakov
%T Braid Groups in Genetic Code
%J Algebra i logika
%D 2006
%P 131-158
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_2_a0/
%G ru
%F AL_2006_45_2_a0
V. G. Bardakov. Braid Groups in Genetic Code. Algebra i logika, Tome 45 (2006) no. 2, pp. 131-158. http://geodesic.mathdoc.fr/item/AL_2006_45_2_a0/