Using Fox Derivatives in Treating Groups of the Form $F/[R',F]$
Algebra i logika, Tome 45 (2006) no. 1, pp. 114-125

Voir la notice de l'article provenant de la source Math-Net.Ru

For a factor group with respect to periodic part of a group of the form $F/[R',F]$, an embedding in the matrix group is defined. The criteria for a matrix to belong to an image of this group and for elements to be conjugate are specified. Some statements having a direct bearing on groups of the form in question are proved. Application of the results obtained allows us to refine the answer in [7] to a question by O. Chapuis concerning the universal classification of $\forall$-free soluble groups with two generators.
Keywords: Fox derivatives, universal theory, Magnus–Kuz'min embedding.
Mots-clés : soluble group
@article{AL_2006_45_1_a5,
     author = {E. I. Timoshenko},
     title = {Using {Fox} {Derivatives} in {Treating} {Groups} of the {Form} $F/[R',F]$},
     journal = {Algebra i logika},
     pages = {114--125},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_1_a5/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Using Fox Derivatives in Treating Groups of the Form $F/[R',F]$
JO  - Algebra i logika
PY  - 2006
SP  - 114
EP  - 125
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_1_a5/
LA  - ru
ID  - AL_2006_45_1_a5
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Using Fox Derivatives in Treating Groups of the Form $F/[R',F]$
%J Algebra i logika
%D 2006
%P 114-125
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_1_a5/
%G ru
%F AL_2006_45_1_a5
E. I. Timoshenko. Using Fox Derivatives in Treating Groups of the Form $F/[R',F]$. Algebra i logika, Tome 45 (2006) no. 1, pp. 114-125. http://geodesic.mathdoc.fr/item/AL_2006_45_1_a5/