Rogers Semilattices of Finite Partially Ordered Sets
Algebra i logika, Tome 45 (2006) no. 1, pp. 44-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the principal sublattice of a Rogers semilattice of a finite partially ordered set is definable. For this goal to be met, we present a generalization of the Denisov theorem concerning extensions of embeddings of Lachlan semilattices to ideals of Rogers semilattices.
Keywords: Rogers semilattice, Lachlan semilattice, definability.
@article{AL_2006_45_1_a3,
     author = {Yu. L. Ershov},
     title = {Rogers {Semilattices} of {Finite} {Partially} {Ordered} {Sets}},
     journal = {Algebra i logika},
     pages = {44--84},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2006_45_1_a3/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Rogers Semilattices of Finite Partially Ordered Sets
JO  - Algebra i logika
PY  - 2006
SP  - 44
EP  - 84
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2006_45_1_a3/
LA  - ru
ID  - AL_2006_45_1_a3
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Rogers Semilattices of Finite Partially Ordered Sets
%J Algebra i logika
%D 2006
%P 44-84
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2006_45_1_a3/
%G ru
%F AL_2006_45_1_a3
Yu. L. Ershov. Rogers Semilattices of Finite Partially Ordered Sets. Algebra i logika, Tome 45 (2006) no. 1, pp. 44-84. http://geodesic.mathdoc.fr/item/AL_2006_45_1_a3/

[1] A. H. Lachlan “Recursively enumerable many-one degrees”, Algebra i logika,, 11:3 (1972), 326–358 | MR | Zbl

[2] Yu. L. Ershov, I. A. Lavrov, “Verkhnyaya polureshetka $L(\mathfrak{S})$”, Algebra i logika, 12:2 (1973), 167–189 | MR | Zbl

[3] Yu. L. Ershov, “Neobkhodimye usloviya izomorfizma polureshetok Rodzhersa konechnykh chastichno uporyadochennykh mnozhestv”, Algebra i logika, 42:4 (2003), 413–421 | MR | Zbl

[4] S. D. Denisov, “Stroenie verkhnei polureshetki rekursivno-perechislimykh $m$-stepenei i smezhnye voprosy. I”, Algebra i logika, 17:6 (1978), 643–683 | MR | Zbl

[5] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR