Rogers Semilattices of Finite Partially Ordered Sets
Algebra i logika, Tome 45 (2006) no. 1, pp. 44-84
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the principal sublattice of a Rogers semilattice of a finite partially ordered set is definable. For this goal to be met, we present a generalization of the Denisov theorem concerning extensions of embeddings of Lachlan semilattices to ideals of Rogers semilattices.
Keywords:
Rogers semilattice, Lachlan semilattice, definability.
@article{AL_2006_45_1_a3,
author = {Yu. L. Ershov},
title = {Rogers {Semilattices} of {Finite} {Partially} {Ordered} {Sets}},
journal = {Algebra i logika},
pages = {44--84},
publisher = {mathdoc},
volume = {45},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2006_45_1_a3/}
}
Yu. L. Ershov. Rogers Semilattices of Finite Partially Ordered Sets. Algebra i logika, Tome 45 (2006) no. 1, pp. 44-84. http://geodesic.mathdoc.fr/item/AL_2006_45_1_a3/