An Adjacency Criterion for the Prime Graph of a~Finite Simple Group
Algebra i logika, Tome 44 (2005) no. 6, pp. 682-725.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every finite non-Abelian simple group, we give an exhaustive arithmetic criterion for adjacency of vertices in a prime graph of the group. For the prime graph of every finite simple group, this criterion is used to determine an independent set with a maximal number of vertices and an independent set with a maximal number of vertices containing 2, and to define orders on these sets; the information obtained is collected in tables. We consider several applications of these results to various problems in finite group theory, in particular, to the recognition-by-spectra problem for finite groups.
Keywords: finite group, finite simple group, group of Lie type, spectrum of a finite group, recognition by spectrum, prime graph of a finite group, independence number of a prime graph, 2-independence number of a prime graph.
@article{AL_2005_44_6_a2,
     author = {A. V. Vasil'ev and E. P. Vdovin},
     title = {An {Adjacency} {Criterion} for the {Prime} {Graph} of {a~Finite} {Simple} {Group}},
     journal = {Algebra i logika},
     pages = {682--725},
     publisher = {mathdoc},
     volume = {44},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_6_a2/}
}
TY  - JOUR
AU  - A. V. Vasil'ev
AU  - E. P. Vdovin
TI  - An Adjacency Criterion for the Prime Graph of a~Finite Simple Group
JO  - Algebra i logika
PY  - 2005
SP  - 682
EP  - 725
VL  - 44
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_6_a2/
LA  - ru
ID  - AL_2005_44_6_a2
ER  - 
%0 Journal Article
%A A. V. Vasil'ev
%A E. P. Vdovin
%T An Adjacency Criterion for the Prime Graph of a~Finite Simple Group
%J Algebra i logika
%D 2005
%P 682-725
%V 44
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_6_a2/
%G ru
%F AL_2005_44_6_a2
A. V. Vasil'ev; E. P. Vdovin. An Adjacency Criterion for the Prime Graph of a~Finite Simple Group. Algebra i logika, Tome 44 (2005) no. 6, pp. 682-725. http://geodesic.mathdoc.fr/item/AL_2005_44_6_a2/

[1] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[2] A. S. Kondratev, “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Matem. sb., 180:6 (1989), 787–797 | MR

[3] V. D. Mazurov, “Characterization of groups by arithmetic properties”, Algebra Colloc., 11:1 (2004), 129–140 | MR | Zbl

[4] A. V. Vasilev, “O svyazi mezhdu stroeniem konechnoi gruppy i svoistvami eë grafa prostykh chisel”, Sib. matem. zh., 46:3 (2005), 511–522 | MR

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[6] The GAP Group, GAP – Groups, algorithms, and programming, Vers. 4.4, , 2004 http://www.qap-system.org

[7] R. W. Carter, Simple groups of Lie type, John Wiley and Sons, London, 1972 | MR | Zbl

[8] J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York, 1972 | MR | Zbl

[9] R. Steinberg, Endomorphisms of algebraic groups, Mem. Am. Math. Soc., 80, 1968 | MR | Zbl

[10] A. Borel, J. de Siebental, “Les-sous-groupes fermés de rang maximum des groupes de Lie clos”, Comment. Math. Helv., 23 (1949), 200–221 | DOI | MR | Zbl

[11] E. B. Dynkin, “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30:2 (1952), 349–462 | MR | Zbl

[12] R. W. Carter, Finite groups of Lie type, conjugacy classes and complex characters, John Wiley and Sons, London, 1985 | MR | Zbl

[13] R. W. Carter, “Centralizers of semisimple elements in the finite classical groups”, Proc. Lond. Math. Soc., III. Ser., 42:1 (1981), 1–41 | DOI | MR | Zbl

[14] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25:1 (1972), 1–59 | MR | Zbl

[15] D. Deriziotis, Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen, 11, Universität Essen, Fachbereich Mathematik, Essen, 1984 | MR | Zbl

[16] K. Zsigmondy, “Zur Theorie Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR

[17] D. Deriziotis, “The centralizers of semisimple elements of the Chevalley groups $E_7$ and $E_8$”, Tokyo J. Math., 6:1 (1983), 191–216 | MR | Zbl

[18] M. S. Lucido, A. R. Moghaddamfar, “Groups with complete prime graph connected components”, J. Group Theory, 7:3 (2004), 373–384 | DOI | MR | Zbl