Zeros in Tables of Characters for the Groups~$S_n$ and~$A_n$.~II
Algebra i logika, Tome 44 (2005) no. 6, pp. 643-663.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P(n)$ be the set of all partitions of a natural number $n$. In the representation theory of symmetric groups, for every partition $\alpha\in P(n)$, the partition $h(\alpha)\in P(n)$ is defined so as to produce a certain set of zeros in the character table for $S_n$. Previously, the analog $f(\alpha)$ of $h(\alpha)$ was obtained pointing out an extra set of zeros in the table mentioned. Namely, $h(\alpha)$ is greatest (under the lexicographic ordering $\le$) of the partitions $\beta$ of $n$ such that $\chi^\alpha(g_\beta)\ne0$, and $f(\alpha)$ is greatest of the partitions $\gamma$ of $n$ that are opposite in sign to $h(\alpha)$ and are such that $\chi^\alpha(g_\gamma)\ne0$, where $\chi^\alpha$ is an irreducible character of $S_n$, indexed by $\alpha$, and $g_\beta$ is an element in the conjugacy class of $S_n$, indexed by $\beta$. For $\alpha\in P(n)$, under some natural restrictions, here, we construct new partitions $h'(\alpha)$ and $f'(\alpha)$ of $n$ possessing the following properties. (A) Let $\alpha\in P(n)$ and $n\geqslant 3$. Then $h'(\alpha)$ is identical is sign to $h(\alpha)$, $\chi^\alpha(g_{h'(\alpha)})\ne0$, but $\chi^\alpha(g_\gamma)=0$ for all $\gamma\in P(n)$ such that the sign of $\gamma$ coincides with one of $h(\alpha)$, and $h'(\alpha)\gamma$. (B) Let $\alpha\in P(n)$, $\alpha\ne\alpha'$, and $n\geqslant4$. Then $f'(\alpha)$ is identical in sign to $f(\alpha)$, $\chi^\alpha(g_{f'(\alpha)})\ne0$, but $\chi^\alpha(g_\gamma)=0$ for all $\gamma\in P(n)$ such that the sign of $\gamma$ coincides with one of $f(\alpha)$, and $f'(\alpha)\gamma$. The results obtained are then applied to study pairs of semiproportional irreducible characters in $A_n$.
Keywords: symmetric group, alternating group, character table of a group.
@article{AL_2005_44_6_a0,
     author = {V. A. Belonogov},
     title = {Zeros in {Tables} of {Characters} for the {Groups~}$S_n$ and~$A_n${.~II}},
     journal = {Algebra i logika},
     pages = {643--663},
     publisher = {mathdoc},
     volume = {44},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_6_a0/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - Zeros in Tables of Characters for the Groups~$S_n$ and~$A_n$.~II
JO  - Algebra i logika
PY  - 2005
SP  - 643
EP  - 663
VL  - 44
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_6_a0/
LA  - ru
ID  - AL_2005_44_6_a0
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T Zeros in Tables of Characters for the Groups~$S_n$ and~$A_n$.~II
%J Algebra i logika
%D 2005
%P 643-663
%V 44
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_6_a0/
%G ru
%F AL_2005_44_6_a0
V. A. Belonogov. Zeros in Tables of Characters for the Groups~$S_n$ and~$A_n$.~II. Algebra i logika, Tome 44 (2005) no. 6, pp. 643-663. http://geodesic.mathdoc.fr/item/AL_2005_44_6_a0/

[1] V. A. Belonogov, “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$”, Algebra i logika, 44:1 (2005), 24–43 | MR | Zbl

[2] G. James, A. Kerber, The representation theory of the symmetric group, Addison-Wesley, London, 1981 | MR

[3] V. A. Belonogov, “O neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Sib. matem. zh., 45:5 (2004), 977–994 | MR | Zbl

[4] V. A. Belonogov, “K gipoteze o poluproportsionalnykh kharakterakh”, Sib. matem. zh., 46:2 (2005), 299–314 | MR | Zbl

[5] V. A. Belonogov, Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990

[6] G. Dzheims, Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR