Arithmetic Interpretability Types of Varieties and Some Additive Problems with Primes
Algebra i logika, Tome 44 (2005) no. 5, pp. 622-630
Cet article a éte moissonné depuis la source Math-Net.Ru
We deal with varieties with one basic operation $f(x_1,\dots,x_n)$ and one defining identity $f(x_1,\dots,x_n)=f(x_\pi(1),\dots, x_\pi(n))$, where $\pi$ is a permutation whose cyclic set consists of distinct primes $p_1,\dots, p_r$, with the sum $p_1+\dots+p_r=n$. Their interpretability types, together with the greatest element $\mathbf1$ in a lattice $\mathbb L^\mathrm{int}$, are said to be arithmetic. It is proved that the arithmetic types constitute a distributive lattice $\mathbb L_\mathrm{ar}$, which is dual to a lattice $\mathrm{Sub}_f\Pi$ of finite subsets of the set $\Pi$ of all primes. It is shown that for $n\geqslant2$, the poset $\mathbb L_\mathrm{ar}(\mathbb S_n)$ of arithmetic types defined by permutations in $\mathbb S_n$, for $n$ fixed, is a lattice iff $n=2,3,4,6,8,9,11$.
Keywords:
arithmetic interpretability types of varieties, lattice.
@article{AL_2005_44_5_a5,
author = {D. M. Smirnov},
title = {Arithmetic {Interpretability} {Types} of {Varieties} and {Some} {Additive} {Problems} with {Primes}},
journal = {Algebra i logika},
pages = {622--630},
year = {2005},
volume = {44},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2005_44_5_a5/}
}
D. M. Smirnov. Arithmetic Interpretability Types of Varieties and Some Additive Problems with Primes. Algebra i logika, Tome 44 (2005) no. 5, pp. 622-630. http://geodesic.mathdoc.fr/item/AL_2005_44_5_a5/
[1] M. Kholl, Teoriya grupp, IL, M., 1962
[2] D. M. Smirnov, “O mnogoobraziyakh, opredelimykh podstanovkami”, Algebra i logika, 42:2 (2003), 237–354 | MR
[3] D. M. Smirnov, “O reshetkakh tipov interpretiruemosti mnogoobrazii”, Algebra i logika, 44:2 (2005), 198–210 | MR | Zbl
[4] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967 | MR
[5] H. E. Richert, “Übert Zerfällungen in ungleiche Primzahlen”, Math. Z., 52 (1949), 342–343 | DOI | MR | Zbl
[6] V. Serpinskii, “Dokazatelstvo postulata Bertrana (teoremy Chebysheva)”, v pril. k kn. avtora, 250 zadach po elementarnoi teorii chisel, Prosveschenie, M., 1968