Lattices That are Embeddable in Suborder Lattices
Algebra i logika, Tome 44 (2005) no. 4, pp. 483-511.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various types of lattices are embedded in suborder lattices of posets possessing certain properties. In particular, it is shown that the class of lattices isomorphic to sublattices of suborder lattices of posets of length at most $n$ is a variety, for any $n\omega$.
Keywords: variety, suborder lattice of posets.
@article{AL_2005_44_4_a5,
     author = {M. V. Semenova},
     title = {Lattices {That} are {Embeddable} in {Suborder} {Lattices}},
     journal = {Algebra i logika},
     pages = {483--511},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_4_a5/}
}
TY  - JOUR
AU  - M. V. Semenova
TI  - Lattices That are Embeddable in Suborder Lattices
JO  - Algebra i logika
PY  - 2005
SP  - 483
EP  - 511
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_4_a5/
LA  - ru
ID  - AL_2005_44_4_a5
ER  - 
%0 Journal Article
%A M. V. Semenova
%T Lattices That are Embeddable in Suborder Lattices
%J Algebra i logika
%D 2005
%P 483-511
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_4_a5/
%G ru
%F AL_2005_44_4_a5
M. V. Semenova. Lattices That are Embeddable in Suborder Lattices. Algebra i logika, Tome 44 (2005) no. 4, pp. 483-511. http://geodesic.mathdoc.fr/item/AL_2005_44_4_a5/

[1] K. V. Adaricheva, V. A. Gorbunov, V. I. Tumanov, “Join-semidistributive lattices and convex geometries”, Adv. Math., 173:1 (2003), 1–49 | DOI | MR | Zbl

[2] D. Bredikhin, B. Schein, “Representation of ordered semigroups and lattices by binary relations”, Colloq. Math., 39 (1978), 1–12 | MR | Zbl

[3] B. Šivak, “Representation of finite lattices by orders on finite sets”, Math. Slovaca, 28 (1978), 203–215 | MR | Zbl

[4] M. V. Semënova, “Reshëtki podporyadkov”, Sib. matem. zh., 40:3 (1999), 673–682 | MR | Zbl

[5] F. Verung, M. V. Semënova, “Podreshëtki reshëtok vypuklykh podmnozhestv vektornykh prostranstv”, Algebra i logika, 43:3 (2004), 261–290 | MR

[6] M. E. Adams, W. Dziobiak, “$Q$-universal quasivarieties of algebras”, Proc. Am. Math. Soc., 120:4 (1994), 1053–1059 | DOI | MR | Zbl

[7] F. Wehrung, Sublattices of complete lattices with continuity conditions, manuscript, 2002

[8] R. Freese, J. Ježek, J. B. Nation, Free lattices, Math. Surv. Monogr., 42, Am. Math. Soc., Providence, RI, 1995 | MR | Zbl

[9] G. Grätzer, General lattice theory, 2nd ed., Birkhäuser Verlag, Basel, 1998 | MR | Zbl

[10] P. Crawley, R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, New Jersey, 1973 | Zbl

[11] G. Gierz, K. H. Hofmann, K. Keimel, et al., A Compendium of continuous lattices, Springer-Verlag, Berlin, New York, 1980 | MR | Zbl

[12] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl

[13] K. V. Adaricheva, V. A. Gorbunov, “On lower bounded lattices”, Algebra Univers., 46:1 (2001), 203–213 | DOI | MR | Zbl

[14] A. P. Huhn, “Schwach distributive Verbände. I”, Acta Sci. Math. (Szeged), 33 (1972), 297–305 | MR | Zbl

[15] J. B. Nation, “An approach to lattice varieties of finite height”, Algebra Univers., 27:4 (1990), 521–543 | DOI | MR | Zbl

[16] M. Semenova, F. Wehrung, “Sublattices of lattices of order-convex sets, II. Posets of finite length”, Int. J. Algebra Comput., 13:5 (2003), 543–564 | DOI | MR | Zbl

[17] J. B. Nation, “Some varieties of semidistributive lattices”, Universal algebra and lattice theory, Proc. conf. Charleston/S.C. 1984, Lect. Notes Math., 1149, 1985, 198–223 | MR | Zbl

[18] M. Semenova, F. Wehrung, “Sublattices of lattices of order-convex sets, I. The main representation theorem”, J. Algebra, 277 (2004), 543–564 | DOI | MR