Semilattices of Definable Subalgebras
Algebra i logika, Tome 44 (2005) no. 4, pp. 474-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

In issues bearing on the structure of universal algebras $\mathcal A$, derived structures, such as automorphism groups $\operatorname{Aut}\mathcal A$, subalgebra lattices $\operatorname{Sub}\mathcal A$, congruence lattices $\operatorname{Con}\mathcal A$, etc., play an important part. On the other hand, in studying universal algebras by the means of model theory, of crucial importance is the question asking which elements of the derived structures under examination are expressible by one or other formulas in the elementary language. Problems concerning the interrelationship of algebras and their derived structures are treated for subalgebras of universal algebras.
Keywords: derived structure, semilattice
Mots-clés : definable subalgebra.
@article{AL_2005_44_4_a4,
     author = {A. G. Pinus},
     title = {Semilattices of {Definable} {Subalgebras}},
     journal = {Algebra i logika},
     pages = {474--482},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_4_a4/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - Semilattices of Definable Subalgebras
JO  - Algebra i logika
PY  - 2005
SP  - 474
EP  - 482
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_4_a4/
LA  - ru
ID  - AL_2005_44_4_a4
ER  - 
%0 Journal Article
%A A. G. Pinus
%T Semilattices of Definable Subalgebras
%J Algebra i logika
%D 2005
%P 474-482
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_4_a4/
%G ru
%F AL_2005_44_4_a4
A. G. Pinus. Semilattices of Definable Subalgebras. Algebra i logika, Tome 44 (2005) no. 4, pp. 474-482. http://geodesic.mathdoc.fr/item/AL_2005_44_4_a4/

[1] I .Grant, “Automorphisms definable by formulas”, Pac. J. Math., 44:1 (1973), 107–115 | MR | Zbl

[2] A. G. Pinus, “O sobstvennykh avtomorfizmakh univesalnykh algebr”, Sib. matem. zh., 45:6 (2004), 1329–1337 | MR | Zbl

[3] W. J. Blok, D. Pigozzi, “On the structure of varieties with equationally definable principal congruences”, Algebra Univers., 15:2 (1982), 195–227 | DOI | MR | Zbl

[4] E. Frid, G. Gratzer, R. Quackenbush, “Uniform congruence schemes”, Algebra Univers., 10:2 (1980), 176–189 | DOI | MR

[5] P. Kohler, D. Pigozzi, “Varieties with equational definable principal congruences”, Algebra Univers., 11:2 (1980), 213–219 | DOI | MR

[6] G. Gretuer, Obschaya teoriya reshëtok, Mir, M., 1982 | MR