Decidability of the Admissibility Problem for Inference Rules in Some $S5_t$-Logics
Algebra i logika, Tome 44 (2005) no. 4, pp. 438-458.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine some many-modal logics extending $S5_t$, $t\in N$, for decidability w.r.t. admissibility of inference rules, and for the logics in question, we prove an algorithmic criterion determining whether the inference rules in them are admissible.
Keywords: inference rule, admissibility problem, decidability, many-modal logic.
@article{AL_2005_44_4_a2,
     author = {A. V. Kosheleva},
     title = {Decidability of the {Admissibility} {Problem} for {Inference} {Rules} in {Some} $S5_t${-Logics}},
     journal = {Algebra i logika},
     pages = {438--458},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_4_a2/}
}
TY  - JOUR
AU  - A. V. Kosheleva
TI  - Decidability of the Admissibility Problem for Inference Rules in Some $S5_t$-Logics
JO  - Algebra i logika
PY  - 2005
SP  - 438
EP  - 458
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_4_a2/
LA  - ru
ID  - AL_2005_44_4_a2
ER  - 
%0 Journal Article
%A A. V. Kosheleva
%T Decidability of the Admissibility Problem for Inference Rules in Some $S5_t$-Logics
%J Algebra i logika
%D 2005
%P 438-458
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_4_a2/
%G ru
%F AL_2005_44_4_a2
A. V. Kosheleva. Decidability of the Admissibility Problem for Inference Rules in Some $S5_t$-Logics. Algebra i logika, Tome 44 (2005) no. 4, pp. 438-458. http://geodesic.mathdoc.fr/item/AL_2005_44_4_a2/

[1] V. V. Rybakov, “Kriterii dopustimosti pravil v modalnoi sisteme $S4$ i intuitsionistskoi logike”, Algebra i logika, 23:5 (1984), 546–572 | MR | Zbl

[2] V. V. Rybakov, “Bazisy dopustimykh pravil logik $S4$ i $\operatorname{Int}$”, Algebra i logika, 24:1 (1985), 87–107 | MR | Zbl

[3] V. V. Rybakov, Admissibility of logical inference rules, Stud. Log. Found. Math., 136, Elsevier Sci. Publ. B. V., Amsterdam, 1997 | MR | Zbl

[4] D. M. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-dimensional modal logics: theory and applications, Stud. Log. Found. Math., 148, Elseiver Sci. Publ. B. V., Amsterdam, 2003 | MR | Zbl

[5] D. Gabbay, V. Shehtman, “Products of modal logics. I”, Log. J. IGPL, 6:1 (1998), 73–146 | DOI | MR | Zbl

[6] D. Gabbay, V. Shehtman, “Products of modal logics. III. Products of modal and temporal logics”, Stud. Log., 72:2 (2002), 157–183 | DOI | MR | Zbl

[7] R. Hirsch, I. Hodkinson, A. Kurucz, “On modal logics between $\mathbf{K}\times\mathbf{K}\times\mathbf{K}$ and $S5\times S5\times S5$”, J. Symb. Log., 67:1 (2002), 221–234 | DOI | MR | Zbl

[8] A. Kurucz, “On axiomatising products of Kripke frames”, J. Symb. Log., 65:2 (2000), 923–945 | DOI | MR

[9] M. Reynolds, M. Zakharyaschev, “On the products of linear modal logics”, J. Log. Comput., 11:6 (2001), 909–931 | DOI | MR | Zbl

[10] K. Segerberg, “Two-dimensional modal logic”, J. Philos. Log., 2 (1973), 77–96 | DOI | MR | Zbl

[11] V. B. Shekhtman, “Dvumernye modalnye logiki”, Matem. zametki, 23:5 (1978), 759–772 | MR | Zbl