The Kervaire~-- Laudenbach Conjecture and Presentations of Simple Groups
Algebra i logika, Tome 44 (2005) no. 4, pp. 399-437.

Voir la notice de l'article provenant de la source Math-Net.Ru

The statement “no non-Abelian simple group can be obtained from a non-simple one by adding one generator and one relator” first is equivalent to the Kervaire – Laudenbach conjecture, and second, becomes true under the additional assumption that an initial non-simple group is either finite or torsion free.
Mots-clés : Kervaire – Laudenbach conjecture, simple group, car motion, cocar comotion.
Keywords: relative presentation
@article{AL_2005_44_4_a1,
     author = {A. A. Klyachko},
     title = {The {Kervaire~--} {Laudenbach} {Conjecture} and {Presentations} of {Simple} {Groups}},
     journal = {Algebra i logika},
     pages = {399--437},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_4_a1/}
}
TY  - JOUR
AU  - A. A. Klyachko
TI  - The Kervaire~-- Laudenbach Conjecture and Presentations of Simple Groups
JO  - Algebra i logika
PY  - 2005
SP  - 399
EP  - 437
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_4_a1/
LA  - ru
ID  - AL_2005_44_4_a1
ER  - 
%0 Journal Article
%A A. A. Klyachko
%T The Kervaire~-- Laudenbach Conjecture and Presentations of Simple Groups
%J Algebra i logika
%D 2005
%P 399-437
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_4_a1/
%G ru
%F AL_2005_44_4_a1
A. A. Klyachko. The Kervaire~-- Laudenbach Conjecture and Presentations of Simple Groups. Algebra i logika, Tome 44 (2005) no. 4, pp. 399-437. http://geodesic.mathdoc.fr/item/AL_2005_44_4_a1/

[1] R. Lindon R., P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[2] V. Magnus, A. Karras, D. Solitfr, Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl

[3] M. Gerstenhaber, O. S. Rothaus, “The solution of sets of equations in groups”, Proc. Nat. Acad. Sci. USA, 48 (1962), 1531–1533 | DOI | MR | Zbl

[4] A. A. Klyachko, “A funny property of a sphere and equations over groups”, Commun. Algebra, 21:7 (1993), 2555–2575 | DOI | MR | Zbl

[5] M. M. Cohen, C. Rourke, “The surjectivity problem for one-generator, one-relator extensions of torsion-free groups”, Geom. Topol., 5 (2001), 127–142 | DOI | MR | Zbl

[6] M. Forester, C. Rourke, Diagrams and the second homotopy group, 1, 5 Jun 2003. arXiv: math.AT/0306088 | MR

[7] A. A. Klyachko, M. I. Prischepov, “Metod spuska dlya uravnenii nad gruppami”, Vestn. MGU, Mat., Mekh., 1995, no. 4, 90–93 | MR | Zbl

[8] A. Clifford, R. Z. Goldstein, “Tesselations of $S^2$ and equations over torsion-free groups”, Proc. Edinb. Math. Soc., II. Ser., 38:3 (1995), 485–493 | DOI | MR | Zbl

[9] A. Clifford, R. Z. Goldstein, “Equations with torsion-free coeffcients”, Proc. Edinb. Math. Soc., II. Ser., 43:2 (2000), 295–307 | DOI | MR | Zbl

[10] R. Fenn, C. Rourke, “Klyachkoś methods and the solution of equations over torsion-free groups”, Enseign. Math., II. Sér., 42:1–2 (1996), 49–74 | MR | Zbl

[11] R. Fenn, C. Rourke, “Characterisation of a class of equations with solution over torsion-free groups”, The Epstein Birthday Schrift ded. D.Epstein on the occasion of 60th birthday, Geom. Topol. Monogr., 1, ed. I. Rivin et al., Univ. Warwick, Inst. Math., Warwick, 1998, 159–166 | MR | Zbl

[12] J. Howie, “The solution of length three equations over groups”, Proc. Edinb. Math. Soc., II. Ser., 26 (1983), 89–96 | DOI | MR | Zbl

[13] A. A. Klyachko, Gipoteza Kervera–Laudenbakha i uravneniya nad gruppami, Diss. k.f.-m.n., MGU, M., 1994

[14] A. A. Klyachko, “Asphericity tests”, Int. J. Algebra Comput., 7:4 (1997), 415–431 | DOI | MR | Zbl