Quasivariety Generated by Free Metabelian and 2-Nilpotent Groups
Algebra i logika, Tome 44 (2005) no. 4, pp. 389-398.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $qG$ be a quasivariety generated by a group $G$ and $\mathcal N$ be a non-Abelian quasivariety of groups with a finite lattice of subquasivarieties. Suppose $\mathcal N$ is contained in a quasivariety generated by the following two groups: a free $2$-nilpotent group $F_2(\mathcal N_2)$ of rank 2 and a free metabelian (i. e., with an Abelian commutant) group $F_2(\mathcal A^2)$ of rank 2. It is proved that either $\mathcal N=q F_2(\mathcal N_2)$ or $\mathcal N=q F_2(\mathcal A^2)$ in this instance.
Keywords: quasivariety, free group, metabelian group, 2-nilpotent group.
@article{AL_2005_44_4_a0,
     author = {A. I. Budkin},
     title = {Quasivariety {Generated} by {Free} {Metabelian} and {2-Nilpotent} {Groups}},
     journal = {Algebra i logika},
     pages = {389--398},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_4_a0/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Quasivariety Generated by Free Metabelian and 2-Nilpotent Groups
JO  - Algebra i logika
PY  - 2005
SP  - 389
EP  - 398
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_4_a0/
LA  - ru
ID  - AL_2005_44_4_a0
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Quasivariety Generated by Free Metabelian and 2-Nilpotent Groups
%J Algebra i logika
%D 2005
%P 389-398
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_4_a0/
%G ru
%F AL_2005_44_4_a0
A. I. Budkin. Quasivariety Generated by Free Metabelian and 2-Nilpotent Groups. Algebra i logika, Tome 44 (2005) no. 4, pp. 389-398. http://geodesic.mathdoc.fr/item/AL_2005_44_4_a0/

[1] A. I. Budkin, “O nezavisimoi aksiomatiziruemosti kvazimnogoobrazii razreshimykh grupp”, Algebra i logika, 30:2 (1991), 125–153 | MR | Zbl

[2] A. I. Budkin, “O kvazimnogoobraziyakh, soderzhaschikh nilpotentnye gruppy bez krucheniya”, Algebra i logika, 40:6 (2001), 629–650 | MR | Zbl

[3] A. I. Budkin, “O reshetke kvazimnogoobrazii metabelevykh grupp bez krucheniya”, Algebra i logika, 42:2 (2003), 162–181 | MR

[4] A. A. Vinogradov, “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | MR | Zbl

[5] A. I. Budkin, “O reshetke kvazimnogoobrazii nilpotentnykh grupp”, Algebra i logika, 33:1 (1994), 25–36 | MR | Zbl

[6] A. N. Fedorov, “Kvazitozhdestva svobodnoi 2-nilpotentnoi gruppy”, Matem. zametki, 40:5 (1986), 590–597 | MR | Zbl

[7] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[8] A. I. Budkin, Kvazimnogoobraziya grupp, izd-vo Alt. un-ta, Barnaul, 2002

[9] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[10] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[11] O. Chapuis, “$\forall$-free metabelian groups”, J. Symb. Log., 62:1 (1997), 159–174 | DOI | MR | Zbl

[12] V. Remeslennikov, R. Stöhr, On the quasivariety generated by a non-cyclic free metabelian group, Manchester Centre Pure Math.

[13] W. Magnus, “On a theorem of Marshall Hall”, Ann. Math., 40:4 (1939), 764–768 | DOI | MR | Zbl

[14] R. Kroull, R. Foks, Vvedenie v teoriyu uzlov, Mir, M., 1967 | MR

[15] N. S. Romanovskii, E. I. Timoshenko, “O nekotorykh elementarnykh svoistvakh 2-stupenno razreshimykh grupp”, Sib. matem. zh., 44:2 (2003), 438–443 | MR | Zbl

[16] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl

[17] M. I. Kargapolov, V. A. Churkin, “O mnogoobraziyakh razreshimykh grupp”, Algebra i logika, 10:6 (1971), 342–351 | MR

[18] A. I. Maltsev, “O svobodnykh razreshimykh gruppakh”, Dokl. Akad. Nauk SSSR, 130:3 (1960), 495–498

[19] x V. M. Kopytov, N. Ya. Medvedev, Pravouporyadochennye gruppy, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1996 | MR | Zbl