Quasivariety Generated by Free Metabelian and 2-Nilpotent Groups
Algebra i logika, Tome 44 (2005) no. 4, pp. 389-398

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $qG$ be a quasivariety generated by a group $G$ and $\mathcal N$ be a non-Abelian quasivariety of groups with a finite lattice of subquasivarieties. Suppose $\mathcal N$ is contained in a quasivariety generated by the following two groups: a free $2$-nilpotent group $F_2(\mathcal N_2)$ of rank 2 and a free metabelian (i. e., with an Abelian commutant) group $F_2(\mathcal A^2)$ of rank 2. It is proved that either $\mathcal N=q F_2(\mathcal N_2)$ or $\mathcal N=q F_2(\mathcal A^2)$ in this instance.
Keywords: quasivariety, free group, metabelian group, 2-nilpotent group.
@article{AL_2005_44_4_a0,
     author = {A. I. Budkin},
     title = {Quasivariety {Generated} by {Free} {Metabelian} and {2-Nilpotent} {Groups}},
     journal = {Algebra i logika},
     pages = {389--398},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_4_a0/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Quasivariety Generated by Free Metabelian and 2-Nilpotent Groups
JO  - Algebra i logika
PY  - 2005
SP  - 389
EP  - 398
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_4_a0/
LA  - ru
ID  - AL_2005_44_4_a0
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Quasivariety Generated by Free Metabelian and 2-Nilpotent Groups
%J Algebra i logika
%D 2005
%P 389-398
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_4_a0/
%G ru
%F AL_2005_44_4_a0
A. I. Budkin. Quasivariety Generated by Free Metabelian and 2-Nilpotent Groups. Algebra i logika, Tome 44 (2005) no. 4, pp. 389-398. http://geodesic.mathdoc.fr/item/AL_2005_44_4_a0/