Borel Subalgebras of Schur Superalgebras
Algebra i logika, Tome 44 (2005) no. 3, pp. 305-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any Schur superalgebra is representable as a product of two Borel subalgebras of that superalgebra, which are symmetric w. r. t. its natural anti-isomorphism (Bruhat – Tits decomposition). This readily implies that any simple module is uniquely defined by its highest weight, and all other weights are strictly less than is the highest under the dominant ordering. It is stated that the fundamental theorem of Kempf, which is valid for all classical Schur algebras, might be true for superalgebras only if they are semisimple. Nevertheless, a weaker theorem of Grothendieck holds true for superalgebras since Borel subalgebras are quasihereditary. Also we formulate an analog of the Donkin – Mathieu theorem for Schur superalgebras, and show that it is valid in the elementary non-classical case, that is, for the algebras $S(1|1, r)$.
Mots-clés : Borel subalgebra, simple module
Keywords: Schur superalgebra.
@article{AL_2005_44_3_a2,
     author = {A. N. Zubkov},
     title = {Borel {Subalgebras} of {Schur} {Superalgebras}},
     journal = {Algebra i logika},
     pages = {305--334},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_3_a2/}
}
TY  - JOUR
AU  - A. N. Zubkov
TI  - Borel Subalgebras of Schur Superalgebras
JO  - Algebra i logika
PY  - 2005
SP  - 305
EP  - 334
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_3_a2/
LA  - ru
ID  - AL_2005_44_3_a2
ER  - 
%0 Journal Article
%A A. N. Zubkov
%T Borel Subalgebras of Schur Superalgebras
%J Algebra i logika
%D 2005
%P 305-334
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_3_a2/
%G ru
%F AL_2005_44_3_a2
A. N. Zubkov. Borel Subalgebras of Schur Superalgebras. Algebra i logika, Tome 44 (2005) no. 3, pp. 305-334. http://geodesic.mathdoc.fr/item/AL_2005_44_3_a2/

[1] I. Schur, “Uber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen”, Gesammelte Abhandlungen I, ed. I. Schur, Springer-Verlag, 1973, 1–70

[2] I. Schur, “Uber die rationalen Darstellungen der allgemeinen linearen Gruppe”, Gesammelte Abhandlungen I, ed. I. Schur, Springer-Verlag, 1973, 65–85

[3] J. A. Green, Polynomial representations of $GL_n$, Lect. Notes Math., 830, Springer-Verlag, Berlin etc., 1980 | MR | Zbl

[4] S. Donkin, “On Schur algebras and related algebras I”, J. Algebra, 104:2 (1986 3), 10–328 | DOI | MR | Zbl

[5] B. Parshall, J. Wang, Quantum linear groups, Mem. Am. Math. Soc., 439, Am. Math. Soc, Providence, RI, 1991 | MR | Zbl

[6] S. Donkin, The $q$-Schur algebras, London Math. Soc. Lect. Note Ser., 253, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[7] N. J. Muir, Polynomial representations of the general linear Lie superalgebra, Ph. D. Thesis, Univ. London, 1991

[8] E. Cline, B. Parshall, L. Scott, “Finite dimensional algebras and highest weight categories”, J. Reine Angew. Math., 391 (1988), 85–99 | MR | Zbl

[9] V. Dlab, C. M. Ringel, “Quasi-hereditary algebras”, Illinois J. Math., 33:2 (1989), 280–291 | MR | Zbl

[10] J. A. Green, “Combinatorics and the Schur algebra”, J. Pure Appl. Algebra, 88:1–3 (1993), 89–106 | DOI | MR | Zbl

[11] F. Marko, A. N. Zubkov, “Schur superalgebras in characteristic $p$, II”, Proc. Lond. Math. Soc. | MR

[12] S. Donkin, “Symmetric and exterior powers, linear source modules and representations of Schur superalgebras”, Proc. Lond. Math. Soc., III. Ser., 83:3 (2001), 647–680 | DOI | MR | Zbl

[13] A. Berele, A. Regev, “Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras”, Adv. Math., 64:2 (1987), 118–175 | DOI | MR | Zbl

[14] S. Donkin, “Standard homological properties for quantum $GL_n$”, J. Algebra, 181:1 (1996), 235–266 | DOI | MR | Zbl

[15] V. Dlab, C. M. Ringel, “The module theoretical approach to quasi-hereditary algebras”, Representations of algebras and related topics, Proc. (Tsukuba Int. Conf. (Kyoto/Jap., 1990)), Lond. Math. Soc. Lect. Note Ser., 168, Cambridge Univ. Press, Cambridge, 1992, 200–224 | MR

[16] J. J. Graham, G. I. Lehrer, “Cellular algebras”, Invent. Math., 123:1 (1996), 1–34 | DOI | MR | Zbl

[17] I. Agoston, V. Dlab, E. Lukacs, “Stratified algebras”, C. R. Math. Acad. Sci., Soc. R. Can., 20:1 (1998), 22–28 | MR | Zbl

[18] E. Cline, B. Parshall, L. Scott, Stratifying endomorphism algebra, Mem. Am. Math. Soc., 591, 1996 | MR | Zbl

[19] F. Marko, A. N. Zubkov, “Schur superalgebras in characteristic $p$”, Algebr. Repr. Theory. (to appear) | MR

[20] Y. A. Drozd, V. V. Kirichenko, Finite dimensional algebras, Springer-Verlag, Berlin etc., 1994 | MR

[21] M. E. Sweedler, Hopf algebras, W. A. Benjamin, Inc., New York, 1969 | MR | Zbl

[22] J. A. Green, “Locally finite representations”, J. Algebra, 41:1 (1976), 137–171 | DOI | MR | Zbl

[23] D. J. Woodcock, “A vanishing theorem for Schur modules”, J. Algebra, 165:3 (1994), 483–506 | DOI | MR | Zbl

[24] S. Donkin, Rational representations of algebraic groups: tensor products and filtrations, Lect. Notes Math., 1140, Springer-Verlag, Berlin etc., 1985 | MR | Zbl

[25] O. Mathieu, “Filtrations of $G$-modules”, Ann. Sci. Éc. Norm. Supér., IV. Sér., 23:4 (1990), 625–644 | MR | Zbl

[26] A. N. Grishkov, F. Marko, A. N. Zubkov, “Exactness of complexes of modules over Schur superalgebras”, Algebra Colloq. | MR