Elementary Theories for Rogers Semilattices
Algebra i logika, Tome 44 (2005) no. 3, pp. 261-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for every level of the arithmetic hierarchy, there exist infinitely many families of sets with pairwise non-elementarily equivalent Rogers semilattices.
Keywords: arithmetic hierarchy, Rogers semilattice, elementary theory.
@article{AL_2005_44_3_a0,
     author = {S. A. Badaev and S. S. Goncharov and A. Sorbi},
     title = {Elementary {Theories} for {Rogers} {Semilattices}},
     journal = {Algebra i logika},
     pages = {261--268},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_3_a0/}
}
TY  - JOUR
AU  - S. A. Badaev
AU  - S. S. Goncharov
AU  - A. Sorbi
TI  - Elementary Theories for Rogers Semilattices
JO  - Algebra i logika
PY  - 2005
SP  - 261
EP  - 268
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_3_a0/
LA  - ru
ID  - AL_2005_44_3_a0
ER  - 
%0 Journal Article
%A S. A. Badaev
%A S. S. Goncharov
%A A. Sorbi
%T Elementary Theories for Rogers Semilattices
%J Algebra i logika
%D 2005
%P 261-268
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_3_a0/
%G ru
%F AL_2005_44_3_a0
S. A. Badaev; S. S. Goncharov; A. Sorbi. Elementary Theories for Rogers Semilattices. Algebra i logika, Tome 44 (2005) no. 3, pp. 261-268. http://geodesic.mathdoc.fr/item/AL_2005_44_3_a0/

[1] V. V. Vyugin, “O nekotorykh primerakh verkhnikh polureshetok vychislimykh numeratsii”, Algebra i logika, 12:5 (1973), 512–529

[2] S. S. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[3] S. A. Badaev, S. S. Goncharov, Algebra i logika, 40:5 (2001), 507–522 | MR | Zbl

[4] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 11–44 | MR

[5] S. A. Badaev, S. S. Goncharov, S. Yu. Podzorov, A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings”, Computability and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 45–77 | MR

[6] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Isomorphism types and theories of Rogers semilattices of arithmetical nuberings”, Computability and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 79–91 | MR