Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2005_44_3_a0, author = {S. A. Badaev and S. S. Goncharov and A. Sorbi}, title = {Elementary {Theories} for {Rogers} {Semilattices}}, journal = {Algebra i logika}, pages = {261--268}, publisher = {mathdoc}, volume = {44}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2005_44_3_a0/} }
S. A. Badaev; S. S. Goncharov; A. Sorbi. Elementary Theories for Rogers Semilattices. Algebra i logika, Tome 44 (2005) no. 3, pp. 261-268. http://geodesic.mathdoc.fr/item/AL_2005_44_3_a0/
[1] V. V. Vyugin, “O nekotorykh primerakh verkhnikh polureshetok vychislimykh numeratsii”, Algebra i logika, 12:5 (1973), 512–529
[2] S. S. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl
[3] S. A. Badaev, S. S. Goncharov, Algebra i logika, 40:5 (2001), 507–522 | MR | Zbl
[4] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 11–44 | MR
[5] S. A. Badaev, S. S. Goncharov, S. Yu. Podzorov, A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings”, Computability and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 45–77 | MR
[6] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Isomorphism types and theories of Rogers semilattices of arithmetical nuberings”, Computability and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 79–91 | MR