Endomorphisms of Automorphism Groups of Free Groups
Algebra i logika, Tome 44 (2005) no. 2, pp. 211-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any non-trivial endomorphism of an automorphism group $\operatorname{Aut}F_n$ of a free group $F_n$, for $n\geqslant3$, either is an automorphism or factorization over a proper automorphism subgroup. An endomorphism of $\operatorname{Aut}F_2$ is an automorphism, or else a homomorphism onto one of the groups $S_3$, $D_8$, $Z_2\times Z_2$, $Z_2$, or $S_3*_{Z_2}(Z_2\times Z_2)$. A non-trivial homomorphism of $\operatorname{Aut}F_n$ into $\operatorname{Aut}F_m$, for $n\geqslant3$, $m\geqslant2$, and $n>m$, is a homomorphism onto $Z_2$ with kernel $\operatorname{SAut}F_n$. As a consequence, we obtain that $\operatorname{Aut}F_n$ is co-Hopfian.
Mots-clés : endomorphism, automorphism group
Keywords: free group.
@article{AL_2005_44_2_a4,
     author = {D. G. Khramtsov},
     title = {Endomorphisms of {Automorphism} {Groups} of {Free} {Groups}},
     journal = {Algebra i logika},
     pages = {211--237},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_2_a4/}
}
TY  - JOUR
AU  - D. G. Khramtsov
TI  - Endomorphisms of Automorphism Groups of Free Groups
JO  - Algebra i logika
PY  - 2005
SP  - 211
EP  - 237
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_2_a4/
LA  - ru
ID  - AL_2005_44_2_a4
ER  - 
%0 Journal Article
%A D. G. Khramtsov
%T Endomorphisms of Automorphism Groups of Free Groups
%J Algebra i logika
%D 2005
%P 211-237
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_2_a4/
%G ru
%F AL_2005_44_2_a4
D. G. Khramtsov. Endomorphisms of Automorphism Groups of Free Groups. Algebra i logika, Tome 44 (2005) no. 2, pp. 211-237. http://geodesic.mathdoc.fr/item/AL_2005_44_2_a4/

[1] D. G. Khramtsov, “Konechnye gruppy avtomorfizmov svobodnykh grupp”, Matem. zametki, 38:3 (1985), 386–392 | MR | Zbl

[2] D. G. Khramtsov, “Konechnye podgruppy grupp vneshnikh avtomorfizmov svobodnykh grupp”, Algebra i logika, 26:3 (1987), 376–394 | MR | Zbl

[3] D. G. Khramtsov, “O vneshnikh avtomorfizmakh svobodnykh grupp”, Teoretiko gruppovye issledovaniya, Sverdlovsk, 1990, 95–127 | MR | Zbl

[4] D. G. Khramtsov, “Sovershennost grupp vneshnikh avtomorfizmov svobodnykh grupp”, Teoretiko gruppovye issledovaniya, Sverdlovsk, 1990, 128–143 | MR | Zbl

[5] D. G. Khramtsov, “Konechnye grafy grupp s izomorfnymi fundamentalnymi gruppami”, Algebra i logika, 30:5 (1991), 595–623 | MR | Zbl

[6] D. G. Khramtsov, Logika i prilozheniya, Mezhd. konf., posv. 60-letiyu ak. Yu. L. Ershova, Novosibirsk, 2000, Tez. soobsch., Novosibirsk, 2000, 107

[7] D. G. Khramtsov, Endomorfizmy grupp avtomorfizmov svobodnykh grupp, 124, In-t matem. SO RAN, Novosibirsk, 2003

[8] J. Dyer, E. Formanek, “The automorphism group of a free group is complete”, J. Lond. Math. Soc., II. Ser., 11:2 (1975), 181–190 | DOI | MR | Zbl

[9] A. Karras, V. Magnus, D. Soliter, Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl

[10] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR