Classifying Countable Boolean Terms
Algebra i logika, Tome 44 (2005) no. 2, pp. 173-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with the Borel and difference hierarchies in the space $P\omega$ of all subsets of $\omega$ endowed with the Scott topology. (The spaces $P\omega$ and $2^\omega$ coincide set-theoretically but differ topologically.) We look at the Wadge reducibility in $P\omega$. The results obtained are applied to the problem of characterizing $\omega_1$ – terms $t$ which satisfy $\mathcal C =t({\boldsymbol\Sigma}^0_1)$ for a given Borel – Wadge class $\mathcal C$. We give its solution for some levels of the Wadge hierarchy, in particular, all levels of the Hausdorff difference hierarchy. Finally, we come up with a discussion of some relevant facts and open questions.
Keywords: countable Boolean term, Wadge hierarchy, Hausdorff difference hierarchy, Borel hierarchy.
@article{AL_2005_44_2_a2,
     author = {V. L. Selivanov},
     title = {Classifying {Countable} {Boolean} {Terms}},
     journal = {Algebra i logika},
     pages = {173--197},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_2_a2/}
}
TY  - JOUR
AU  - V. L. Selivanov
TI  - Classifying Countable Boolean Terms
JO  - Algebra i logika
PY  - 2005
SP  - 173
EP  - 197
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_2_a2/
LA  - ru
ID  - AL_2005_44_2_a2
ER  - 
%0 Journal Article
%A V. L. Selivanov
%T Classifying Countable Boolean Terms
%J Algebra i logika
%D 2005
%P 173-197
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_2_a2/
%G ru
%F AL_2005_44_2_a2
V. L. Selivanov. Classifying Countable Boolean Terms. Algebra i logika, Tome 44 (2005) no. 2, pp. 173-197. http://geodesic.mathdoc.fr/item/AL_2005_44_2_a2/

[1] V. L. Selivanov, “Fine hierarchies and Boolean terms”, J. Symb. Log., 60:1 (1995), 289–317 | DOI | MR | Zbl

[2] W. Wadge, “Degrees of complexity of subsets of the Baire space”, Notices Am. Math. Soc., 1972, no. A-714

[3] W. Wadge, Reducibility and determinateness in the Baire space, PhD thesis, Univ. California, Berkeley, 1984

[4] R. van Wesep, “Wadge degrees and descriptive set theory”, Cabal Semin., Proc. Caltech-UCLA Logic Semin. 1976-77, Lec. Notes Math., 689, 1978, 151–170 | MR | Zbl

[5] J. Steel, “Determinateness and the separation property”, J. Symb. Log., 45:1 (1981), 41–44 | DOI | MR

[6] Y. N. Moschovakis, Descriptive set theory, North-Holland Publ. Co., Amsterdam, 1980 | MR | Zbl

[7] A. Tang, “Chain properties in $P_{\omega}$”, Theor. Comput. Sci., 9 (1979), 153–172 | DOI | MR | Zbl

[8] V. L. Selivanov, “Raznostnaya ierarkhiya v $\varphi$-prostranstvakh”, Algebra i logika, 43:4 (2004), 425–444 | MR | Zbl

[9] L. V. Kantorovich, E. M. Livenson, “Memoir on the analytical operations and projective sets. I”, Fund. Math., 18 (1932), 214–271

[10] R. van Wesep, Subsystems of second-order arithmetic, and descriptive set theory under the axiom of determinateness, PhD thesis, Univ. California, Berkeley, 1977

[11] L. Staiger, “Hierarchies of recursive $\omega$-languages”, Elektron. Inf. Kybern., 22:5/6 (1986), 219–241 | MR | Zbl