Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2005_44_2_a1, author = {S. Yu. Podzorov}, title = {Local {Structure} of {Rogers} {Semilattices} of~$\Sigma^0_n${-Computable} {Numberings}}, journal = {Algebra i logika}, pages = {148--172}, publisher = {mathdoc}, volume = {44}, number = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2005_44_2_a1/} }
S. Yu. Podzorov. Local Structure of Rogers Semilattices of~$\Sigma^0_n$-Computable Numberings. Algebra i logika, Tome 44 (2005) no. 2, pp. 148-172. http://geodesic.mathdoc.fr/item/AL_2005_44_2_a1/
[1] S. S. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl
[2] S. A. Badaev, S. S. Goncharov, “O polureshetkakh Rodzhersa semeistv arifmeticheskikh mnozhestv”, Algebra i logika, 40:5 (2001), 507–522 | MR | Zbl
[3] S. Yu. Podzorov, “Nachalnye segmenty v polureshetkakh Rodzhersa $\Sigma^0_n$-vychislimykh numeratsii”, Algebra i logika, 42:2 (2003), 211–225 | MR
[4] S. A. Badaev, S. S. Goncharov, S. Yu. Podzorov, A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings”, Computability and models,, Plenum Publishers, Kluwer Academic, 2003, 45–77 | MR
[5] A. H. Lachlan, “Recursively enumerable many-one degrees”, Algebra i logika, 11:3 (1972), 326–358 | MR | Zbl
[6] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR
[7] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR
[8] S. D. Denisov, “Stroenie verkhnei polureshetki rekursivno perechislimykh $m$-stepenei i smezhnye voprosy. 1”, Algebra i logika, 17:6 (1978), 643–683 | MR | Zbl