Local Structure of Rogers Semilattices of~$\Sigma^0_n$-Computable Numberings
Algebra i logika, Tome 44 (2005) no. 2, pp. 148-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal in specific features of the algebraic structure of Rogers semilattices of $\Sigma^0_n$ – computable numberings, for $n\geqslant2$. It is proved that any Lachlan semilattice is embeddable (as an ideal) in such every semilattice, and that over an arbitrary non $0'$-principal element of such a lattice, any Lachlan semilattice is embeddable (as an interval) in it.
Keywords: Rogers semilattice, Lachlan semilattice, $\Sigma^0_n$-computable numbering.
@article{AL_2005_44_2_a1,
     author = {S. Yu. Podzorov},
     title = {Local {Structure} of {Rogers} {Semilattices} of~$\Sigma^0_n${-Computable} {Numberings}},
     journal = {Algebra i logika},
     pages = {148--172},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_2_a1/}
}
TY  - JOUR
AU  - S. Yu. Podzorov
TI  - Local Structure of Rogers Semilattices of~$\Sigma^0_n$-Computable Numberings
JO  - Algebra i logika
PY  - 2005
SP  - 148
EP  - 172
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_2_a1/
LA  - ru
ID  - AL_2005_44_2_a1
ER  - 
%0 Journal Article
%A S. Yu. Podzorov
%T Local Structure of Rogers Semilattices of~$\Sigma^0_n$-Computable Numberings
%J Algebra i logika
%D 2005
%P 148-172
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_2_a1/
%G ru
%F AL_2005_44_2_a1
S. Yu. Podzorov. Local Structure of Rogers Semilattices of~$\Sigma^0_n$-Computable Numberings. Algebra i logika, Tome 44 (2005) no. 2, pp. 148-172. http://geodesic.mathdoc.fr/item/AL_2005_44_2_a1/

[1] S. S. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[2] S. A. Badaev, S. S. Goncharov, “O polureshetkakh Rodzhersa semeistv arifmeticheskikh mnozhestv”, Algebra i logika, 40:5 (2001), 507–522 | MR | Zbl

[3] S. Yu. Podzorov, “Nachalnye segmenty v polureshetkakh Rodzhersa $\Sigma^0_n$-vychislimykh numeratsii”, Algebra i logika, 42:2 (2003), 211–225 | MR

[4] S. A. Badaev, S. S. Goncharov, S. Yu. Podzorov, A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings”, Computability and models,, Plenum Publishers, Kluwer Academic, 2003, 45–77 | MR

[5] A. H. Lachlan, “Recursively enumerable many-one degrees”, Algebra i logika, 11:3 (1972), 326–358 | MR | Zbl

[6] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR

[7] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[8] S. D. Denisov, “Stroenie verkhnei polureshetki rekursivno perechislimykh $m$-stepenei i smezhnye voprosy. 1”, Algebra i logika, 17:6 (1978), 643–683 | MR | Zbl