Local Structure of Rogers Semilattices of $\Sigma^0_n$-Computable Numberings
Algebra i logika, Tome 44 (2005) no. 2, pp. 148-172
Voir la notice de l'article provenant de la source Math-Net.Ru
We deal in specific features of the algebraic structure of Rogers semilattices of $\Sigma^0_n$ – computable numberings, for $n\geqslant2$. It is proved that any Lachlan semilattice is embeddable (as an ideal) in such every semilattice, and that over an arbitrary non $0'$-principal element of such a lattice, any Lachlan semilattice is embeddable (as an interval) in it.
Keywords:
Rogers semilattice, Lachlan semilattice, $\Sigma^0_n$-computable numbering.
@article{AL_2005_44_2_a1,
author = {S. Yu. Podzorov},
title = {Local {Structure} of {Rogers} {Semilattices} of~$\Sigma^0_n${-Computable} {Numberings}},
journal = {Algebra i logika},
pages = {148--172},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2005_44_2_a1/}
}
S. Yu. Podzorov. Local Structure of Rogers Semilattices of $\Sigma^0_n$-Computable Numberings. Algebra i logika, Tome 44 (2005) no. 2, pp. 148-172. http://geodesic.mathdoc.fr/item/AL_2005_44_2_a1/