A characterization of alternating groups
Algebra i logika, Tome 44 (2005) no. 1, pp. 54-69

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a group $G$ generated by a conjugacy class $X$ of elements of order 3, so that every two non-commuting elements of $X$ generate a subgroup isomorphic to an alternating group of degree 4 or 5, is locally finite. More precisely, either $G$ contains a normal elementary 2-subgroup of index 3, or $G$ is isomorphic to an alternating group of permutations on some (possibly infinite) set.
Keywords: alternating group, locally finite group.
@article{AL_2005_44_1_a3,
     author = {V. D. Mazurov},
     title = {A~characterization of alternating groups},
     journal = {Algebra i logika},
     pages = {54--69},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_1_a3/}
}
TY  - JOUR
AU  - V. D. Mazurov
TI  - A characterization of alternating groups
JO  - Algebra i logika
PY  - 2005
SP  - 54
EP  - 69
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_1_a3/
LA  - ru
ID  - AL_2005_44_1_a3
ER  - 
%0 Journal Article
%A V. D. Mazurov
%T A characterization of alternating groups
%J Algebra i logika
%D 2005
%P 54-69
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_1_a3/
%G ru
%F AL_2005_44_1_a3
V. D. Mazurov. A characterization of alternating groups. Algebra i logika, Tome 44 (2005) no. 1, pp. 54-69. http://geodesic.mathdoc.fr/item/AL_2005_44_1_a3/