Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2005_44_1_a3, author = {V. D. Mazurov}, title = {A~characterization of alternating groups}, journal = {Algebra i logika}, pages = {54--69}, publisher = {mathdoc}, volume = {44}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2005_44_1_a3/} }
V. D. Mazurov. A~characterization of alternating groups. Algebra i logika, Tome 44 (2005) no. 1, pp. 54-69. http://geodesic.mathdoc.fr/item/AL_2005_44_1_a3/
[1] B. Stellmacher, “Einfache Gruppen, die von einer Konjugiertenklasse von Elementen der Ordnung drei erzeugt werden”, J. Algebra, 30 (1974), 320–354 | DOI | MR | Zbl
[2] H. Zassenhaus, “Kennzeichnung endlicher linearen Gruppen als Permutations-gruppen”, Abhandl. math. Semin. Univ. Hamburg, 11 (1936), 17–40 | DOI
[3] A. I. Sozutov, “O stroenii neinvariantnogo mnozhitelya v nekotorykh gruppakh Frobeniusa”, Sib. matem. zh., 35:4 (1994), 893–901 | MR | Zbl
[4] A. Kh. Zhurtov, “O kvadratichnykh avtomorfizmakh abelevykh grupp”, Algebra i logika, 39:3 (2000), 320–328 | MR | Zbl
[5] A. Kh. Zhurtov, “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. matem. zh., 41:2 (2000), 329–338 | MR | Zbl
[6] V. D. Mazurov, V. A. Churkin, “O gruppe, svobodno deistvuyuschei na abelevoi gruppe”, Sib. matem. zh., 42:4 (2001), 888–891 | MR | Zbl
[7] V. D. Mazurov, V. A. Churkin, “O svobodnom deistvii gruppy na abelevoi gruppe”, Sib. matem. zh., 43:3 (2002), 600–608 | MR | Zbl
[8] V. Mazurov, “A new proof of Zassenhaus theorem on finite groups of fixed-point- free automorphisms”, J. Algebra, 263:1 (2003), 1–7 | DOI | MR | Zbl
[9] A. Kh. Zhurtov, “O gruppe, deistvuyuschei lokalno svobodno na abelevoi gruppe”, Sib. matem. zh., 44:2 (2003), 343–346 | MR | Zbl
[10] M. Schönert, et al., Groups, Algorithms and Programming,, RWTH Aachen, Lehrstuhl D für Mathematik, 1994
[11] R. D. Carmichael, Introduction to the theory of groups of finite order, Gime Co., Boston, 1937 | Zbl
[12] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1995 | MR