A~characterization of alternating groups
Algebra i logika, Tome 44 (2005) no. 1, pp. 54-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a group $G$ generated by a conjugacy class $X$ of elements of order 3, so that every two non-commuting elements of $X$ generate a subgroup isomorphic to an alternating group of degree 4 or 5, is locally finite. More precisely, either $G$ contains a normal elementary 2-subgroup of index 3, or $G$ is isomorphic to an alternating group of permutations on some (possibly infinite) set.
Keywords: alternating group, locally finite group.
@article{AL_2005_44_1_a3,
     author = {V. D. Mazurov},
     title = {A~characterization of alternating groups},
     journal = {Algebra i logika},
     pages = {54--69},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_1_a3/}
}
TY  - JOUR
AU  - V. D. Mazurov
TI  - A~characterization of alternating groups
JO  - Algebra i logika
PY  - 2005
SP  - 54
EP  - 69
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_1_a3/
LA  - ru
ID  - AL_2005_44_1_a3
ER  - 
%0 Journal Article
%A V. D. Mazurov
%T A~characterization of alternating groups
%J Algebra i logika
%D 2005
%P 54-69
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_1_a3/
%G ru
%F AL_2005_44_1_a3
V. D. Mazurov. A~characterization of alternating groups. Algebra i logika, Tome 44 (2005) no. 1, pp. 54-69. http://geodesic.mathdoc.fr/item/AL_2005_44_1_a3/

[1] B. Stellmacher, “Einfache Gruppen, die von einer Konjugiertenklasse von Elementen der Ordnung drei erzeugt werden”, J. Algebra, 30 (1974), 320–354 | DOI | MR | Zbl

[2] H. Zassenhaus, “Kennzeichnung endlicher linearen Gruppen als Permutations-gruppen”, Abhandl. math. Semin. Univ. Hamburg, 11 (1936), 17–40 | DOI

[3] A. I. Sozutov, “O stroenii neinvariantnogo mnozhitelya v nekotorykh gruppakh Frobeniusa”, Sib. matem. zh., 35:4 (1994), 893–901 | MR | Zbl

[4] A. Kh. Zhurtov, “O kvadratichnykh avtomorfizmakh abelevykh grupp”, Algebra i logika, 39:3 (2000), 320–328 | MR | Zbl

[5] A. Kh. Zhurtov, “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. matem. zh., 41:2 (2000), 329–338 | MR | Zbl

[6] V. D. Mazurov, V. A. Churkin, “O gruppe, svobodno deistvuyuschei na abelevoi gruppe”, Sib. matem. zh., 42:4 (2001), 888–891 | MR | Zbl

[7] V. D. Mazurov, V. A. Churkin, “O svobodnom deistvii gruppy na abelevoi gruppe”, Sib. matem. zh., 43:3 (2002), 600–608 | MR | Zbl

[8] V. Mazurov, “A new proof of Zassenhaus theorem on finite groups of fixed-point- free automorphisms”, J. Algebra, 263:1 (2003), 1–7 | DOI | MR | Zbl

[9] A. Kh. Zhurtov, “O gruppe, deistvuyuschei lokalno svobodno na abelevoi gruppe”, Sib. matem. zh., 44:2 (2003), 343–346 | MR | Zbl

[10] M. Schönert, et al., Groups, Algorithms and Programming,, RWTH Aachen, Lehrstuhl D für Mathematik, 1994

[11] R. D. Carmichael, Introduction to the theory of groups of finite order, Gime Co., Boston, 1937 | Zbl

[12] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1995 | MR