Rationality and strong reality for Sylow 2-subgroups of Weyl and alternating groups
Algebra i logika, Tome 44 (2005) no. 1, pp. 44-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that values of all complex characters for a Sylow 2-subgroup $P$ of any Weyl group are rational, and every element of $P$ is a product of two involutions in $P$. Similar results hold also for Sylow 2-subgroups of alternating groups.
Keywords: Weyl group, alternating group, Sylow 2-subgroup.
@article{AL_2005_44_1_a2,
     author = {S. G. Kolesnikov},
     title = {Rationality and strong reality for {Sylow} 2-subgroups of {Weyl} and alternating groups},
     journal = {Algebra i logika},
     pages = {44--53},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_1_a2/}
}
TY  - JOUR
AU  - S. G. Kolesnikov
TI  - Rationality and strong reality for Sylow 2-subgroups of Weyl and alternating groups
JO  - Algebra i logika
PY  - 2005
SP  - 44
EP  - 53
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_1_a2/
LA  - ru
ID  - AL_2005_44_1_a2
ER  - 
%0 Journal Article
%A S. G. Kolesnikov
%T Rationality and strong reality for Sylow 2-subgroups of Weyl and alternating groups
%J Algebra i logika
%D 2005
%P 44-53
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_1_a2/
%G ru
%F AL_2005_44_1_a2
S. G. Kolesnikov. Rationality and strong reality for Sylow 2-subgroups of Weyl and alternating groups. Algebra i logika, Tome 44 (2005) no. 1, pp. 44-53. http://geodesic.mathdoc.fr/item/AL_2005_44_1_a2/

[1] Zh.-P. Serr, “Gruppy Galua nad $Q$”, Trudy seminara Burbaki za 1988 g., Matematika. Novoe v zarubezhnoi nauke, 46, Mir, M., 1990

[2] R. Karter, “Klassy sopryazhennykh elementov v gruppe Veilya”, Seminar po algebraicheskim gruppam, Matematika, Mir, M., 1973 | MR

[3] Kourovskaya tetrad, 15-e izd., In-t matem. SO RAN, Novosibirsk, 2002 | MR

[4] N. Burbaki, Gruppy i algebry Li. Glavy IV-VI, Mir, M., 1972 | MR | Zbl

[5] M. Kholl, Teoriya grupp, IL, M., 1962