Zeros in tables of characters for the groups $S_n$ and~$A_n$
Algebra i logika, Tome 44 (2005) no. 1, pp. 24-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the representation theory of symmetric groups, for each partition $\alpha$ of a natural number $n$, the partition $h(\alpha)$ of $n$ is defined so as to obtain a certain set of zeros in the table of characters for $S_n$. Namely, $h(\alpha)$ is the greatest (under the lexicographic ordering $\leq$) partition among $\beta\in P(n)$ such that $\chi^\alpha(g_\beta)\ne0$. Here, $\chi^\alpha$ – is an irreducible character of $S_n$, indexed by a partition $\alpha$, and $g_\beta$ is a conjugacy class of elements in $S_n$, indexed by a partition $\beta$. We point out an extra set of zeros in the table that we are dealing with. For every non self-associated partition $\alpha\in P(n)$ the partition $f(\alpha)$ of $n$ is defined so that $f(\alpha)$ is greatest among the partitions $\beta$ of $n$ which are opposite in sign to $h(\alpha)$ and are such that $\chi^\alpha(g_\beta)\ne0$ (Thm. 1). Also, for any self-associated partition $\alpha$ of $n>1$, we construct a partition $\tilde f(\alpha)\in P(n)$ such that $\tilde f(\alpha)$ is greatest among the partitions $\beta$ of $n$ which are distinct from $h(\alpha)$ and are such that $\chi^\alpha(g_\beta)\ne0$ (Thm. 2).
Keywords: symmetric group, table of characters
Mots-clés : partition.
@article{AL_2005_44_1_a1,
     author = {V. A. Belonogov},
     title = {Zeros in tables of characters for the groups $S_n$ and~$A_n$},
     journal = {Algebra i logika},
     pages = {24--43},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_1_a1/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - Zeros in tables of characters for the groups $S_n$ and~$A_n$
JO  - Algebra i logika
PY  - 2005
SP  - 24
EP  - 43
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_1_a1/
LA  - ru
ID  - AL_2005_44_1_a1
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T Zeros in tables of characters for the groups $S_n$ and~$A_n$
%J Algebra i logika
%D 2005
%P 24-43
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_1_a1/
%G ru
%F AL_2005_44_1_a1
V. A. Belonogov. Zeros in tables of characters for the groups $S_n$ and~$A_n$. Algebra i logika, Tome 44 (2005) no. 1, pp. 24-43. http://geodesic.mathdoc.fr/item/AL_2005_44_1_a1/

[1] G. Dzheims, Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR

[2] G. James, A. Kerber, The representation theory of the symmetric group, Addison-Wesley, London, 1981 | MR

[3] V. A. Belonogov, Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990 | MR

[4] V. A. Belonogov, “O neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Sib. matem. zh., 45:5 (2004), 977–994 | MR | Zbl