Strongly constructive Boolean algebras
Algebra i logika, Tome 44 (2005) no. 1, pp. 3-23

Voir la notice de l'article provenant de la source Math-Net.Ru

A computable structure is said to be $n$-constructive if there exists an algorithm which, given a finite $\Sigma_n$-formula and a tuple of elements, determines whether that tuple satisfies this formula. A structure is strongly constructive if such an algorithm exists for all formulas of the predicate calculus, and is decidable if it has a strongly constructive isomorphic copy. We give a complete description of relations between $n$-constructibility and decidability for Boolean algebras of a fixed elementary characteristic.
Keywords: computable structure, Boolean algebra, strongly constructive structure, decidable structure.
Mots-clés : $n$-constructive structure
@article{AL_2005_44_1_a0,
     author = {P. E. Alaev},
     title = {Strongly constructive {Boolean} algebras},
     journal = {Algebra i logika},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2005_44_1_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Strongly constructive Boolean algebras
JO  - Algebra i logika
PY  - 2005
SP  - 3
EP  - 23
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2005_44_1_a0/
LA  - ru
ID  - AL_2005_44_1_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Strongly constructive Boolean algebras
%J Algebra i logika
%D 2005
%P 3-23
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2005_44_1_a0/
%G ru
%F AL_2005_44_1_a0
P. E. Alaev. Strongly constructive Boolean algebras. Algebra i logika, Tome 44 (2005) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/AL_2005_44_1_a0/