The Computable Dimension of $I$-Trees of Infinite Height
Algebra i logika, Tome 43 (2004) no. 6, pp. 702-729.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study computable trees with distinguished initial subtree (briefly, $I$-trees). It is proved that all $I$-trees of infinite height are computably categorical, and moreover, they all have effectively infinite computable dimension.
Keywords: computable tree with distinguished initial subtree, computably categorical model, branching model, effectively infinite computable dimension.
Mots-clés : computable dimension
@article{AL_2004_43_6_a3,
     author = {N. T. Kogabaev and O. V. Kudinov and R. Miller},
     title = {The {Computable} {Dimension} of $I${-Trees} of {Infinite} {Height}},
     journal = {Algebra i logika},
     pages = {702--729},
     publisher = {mathdoc},
     volume = {43},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_6_a3/}
}
TY  - JOUR
AU  - N. T. Kogabaev
AU  - O. V. Kudinov
AU  - R. Miller
TI  - The Computable Dimension of $I$-Trees of Infinite Height
JO  - Algebra i logika
PY  - 2004
SP  - 702
EP  - 729
VL  - 43
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_6_a3/
LA  - ru
ID  - AL_2004_43_6_a3
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%A O. V. Kudinov
%A R. Miller
%T The Computable Dimension of $I$-Trees of Infinite Height
%J Algebra i logika
%D 2004
%P 702-729
%V 43
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_6_a3/
%G ru
%F AL_2004_43_6_a3
N. T. Kogabaev; O. V. Kudinov; R. Miller. The Computable Dimension of $I$-Trees of Infinite Height. Algebra i logika, Tome 43 (2004) no. 6, pp. 702-729. http://geodesic.mathdoc.fr/item/AL_2004_43_6_a3/

[1] R. G. Miller, “The computable dimension of trees of in.nite height” (to appear)

[2] S. Lempp, C. McCoy, R. G. Miller, R. Solomon, “Computable categoricity of trees of finite height” (to appear)

[3] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[4] Handbook of recursive mathematics, vol. 1,2, Stud. Logic Found. Math., 138–139, eds. Y. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, Elsevier Science B.V., Amsterdam, 1998 | MR

[5] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl

[6] P. E. Alaev, “Avtoustoichivye $I$-algebry”, Algebra i logika, 43:5 (2004), 511–550 | MR | Zbl

[7] J. B. Kruskal, “Well-quasy-ordering, the tree theorem, and Vázsonyi's conjecture”, Trans. Am. Math. Soc., 95:2 (1960), 210–225 | DOI | MR | Zbl

[8] S. G. Simpson, “Nonprovability of certain combinatorical properties of finite trees”, Harvey Friedman's research on the foundations of mathematics, Stud. Logic Found. Math., 117, eds. L. A. Harrington, M. D. Morley, A. Scedrov, S. G. Simpson, North-Holland, Amsterdam, 1985, 87–117 | MR

[9] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR