Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2004_43_6_a3, author = {N. T. Kogabaev and O. V. Kudinov and R. Miller}, title = {The {Computable} {Dimension} of $I${-Trees} of {Infinite} {Height}}, journal = {Algebra i logika}, pages = {702--729}, publisher = {mathdoc}, volume = {43}, number = {6}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2004_43_6_a3/} }
N. T. Kogabaev; O. V. Kudinov; R. Miller. The Computable Dimension of $I$-Trees of Infinite Height. Algebra i logika, Tome 43 (2004) no. 6, pp. 702-729. http://geodesic.mathdoc.fr/item/AL_2004_43_6_a3/
[1] R. G. Miller, “The computable dimension of trees of in.nite height” (to appear)
[2] S. Lempp, C. McCoy, R. G. Miller, R. Solomon, “Computable categoricity of trees of finite height” (to appear)
[3] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999
[4] Handbook of recursive mathematics, vol. 1,2, Stud. Logic Found. Math., 138–139, eds. Y. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, Elsevier Science B.V., Amsterdam, 1998 | MR
[5] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl
[6] P. E. Alaev, “Avtoustoichivye $I$-algebry”, Algebra i logika, 43:5 (2004), 511–550 | MR | Zbl
[7] J. B. Kruskal, “Well-quasy-ordering, the tree theorem, and Vázsonyi's conjecture”, Trans. Am. Math. Soc., 95:2 (1960), 210–225 | DOI | MR | Zbl
[8] S. G. Simpson, “Nonprovability of certain combinatorical properties of finite trees”, Harvey Friedman's research on the foundations of mathematics, Stud. Logic Found. Math., 117, eds. L. A. Harrington, M. D. Morley, A. Scedrov, S. G. Simpson, North-Holland, Amsterdam, 1985, 87–117 | MR
[9] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR