The Computable Dimension of $I$-Trees of Infinite Height
Algebra i logika, Tome 43 (2004) no. 6, pp. 702-729

Voir la notice de l'article provenant de la source Math-Net.Ru

We study computable trees with distinguished initial subtree (briefly, $I$-trees). It is proved that all $I$-trees of infinite height are computably categorical, and moreover, they all have effectively infinite computable dimension.
Keywords: computable tree with distinguished initial subtree, computably categorical model, branching model, effectively infinite computable dimension.
Mots-clés : computable dimension
@article{AL_2004_43_6_a3,
     author = {N. T. Kogabaev and O. V. Kudinov and R. Miller},
     title = {The {Computable} {Dimension} of $I${-Trees} of {Infinite} {Height}},
     journal = {Algebra i logika},
     pages = {702--729},
     publisher = {mathdoc},
     volume = {43},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_6_a3/}
}
TY  - JOUR
AU  - N. T. Kogabaev
AU  - O. V. Kudinov
AU  - R. Miller
TI  - The Computable Dimension of $I$-Trees of Infinite Height
JO  - Algebra i logika
PY  - 2004
SP  - 702
EP  - 729
VL  - 43
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_6_a3/
LA  - ru
ID  - AL_2004_43_6_a3
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%A O. V. Kudinov
%A R. Miller
%T The Computable Dimension of $I$-Trees of Infinite Height
%J Algebra i logika
%D 2004
%P 702-729
%V 43
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_6_a3/
%G ru
%F AL_2004_43_6_a3
N. T. Kogabaev; O. V. Kudinov; R. Miller. The Computable Dimension of $I$-Trees of Infinite Height. Algebra i logika, Tome 43 (2004) no. 6, pp. 702-729. http://geodesic.mathdoc.fr/item/AL_2004_43_6_a3/