The Computable Dimension of $I$-Trees of Infinite Height
Algebra i logika, Tome 43 (2004) no. 6, pp. 702-729
Voir la notice de l'article provenant de la source Math-Net.Ru
We study computable trees with distinguished initial subtree (briefly, $I$-trees). It is proved that all $I$-trees of infinite height are computably categorical, and moreover, they all have effectively infinite computable dimension.
Keywords:
computable tree with distinguished initial subtree, computably categorical model, branching model, effectively infinite computable dimension.
Mots-clés : computable dimension
Mots-clés : computable dimension
@article{AL_2004_43_6_a3,
author = {N. T. Kogabaev and O. V. Kudinov and R. Miller},
title = {The {Computable} {Dimension} of $I${-Trees} of {Infinite} {Height}},
journal = {Algebra i logika},
pages = {702--729},
publisher = {mathdoc},
volume = {43},
number = {6},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2004_43_6_a3/}
}
N. T. Kogabaev; O. V. Kudinov; R. Miller. The Computable Dimension of $I$-Trees of Infinite Height. Algebra i logika, Tome 43 (2004) no. 6, pp. 702-729. http://geodesic.mathdoc.fr/item/AL_2004_43_6_a3/