Fixed Points in Tense Models
Algebra i logika, Tome 43 (2004) no. 5, pp. 589-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study into definability of least fixed points in tense logic. It is proved that least fixed points of tense positive $\Sigma$-operators are definable in transitive linear models. Examples are furnished showing that the least fixed points of tense positive operators may fail to be definable in the class of finite linearly ordered models, and the class of finite strictly linearly ordered models. Moreover, in dealing with the modal case, we point out examples of the non-definable inflationary points in the model classes mentioned.
Keywords: tense logic, least fixed points, class of finite linearly ordered models, class of finite strictly linearly ordered models, modal models, inflationary points.
@article{AL_2004_43_5_a4,
     author = {S. I. Mardaev},
     title = {Fixed {Points} in {Tense} {Models}},
     journal = {Algebra i logika},
     pages = {589--602},
     publisher = {mathdoc},
     volume = {43},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_5_a4/}
}
TY  - JOUR
AU  - S. I. Mardaev
TI  - Fixed Points in Tense Models
JO  - Algebra i logika
PY  - 2004
SP  - 589
EP  - 602
VL  - 43
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_5_a4/
LA  - ru
ID  - AL_2004_43_5_a4
ER  - 
%0 Journal Article
%A S. I. Mardaev
%T Fixed Points in Tense Models
%J Algebra i logika
%D 2004
%P 589-602
%V 43
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_5_a4/
%G ru
%F AL_2004_43_5_a4
S. I. Mardaev. Fixed Points in Tense Models. Algebra i logika, Tome 43 (2004) no. 5, pp. 589-602. http://geodesic.mathdoc.fr/item/AL_2004_43_5_a4/

[1] S. I. Mardaev, “Nepodvizhnye tochki vremennykh operatorov”, Algebra i teoriya modelei 2, trudy 3-ei mezhd. shkoly “Pogranichnye voprosy teorii modelei i universalnoi algebry”, Erlagol, 21–27 iyunya 1999, izd-vo NRTU, Novosibirsk, 1999, 68–77 | MR

[2] S. I. Mardaev, “Naimenshie nepodvizhnye tochki v logike Rzhegorchika i intuitsionistskoi propozitsionalnoi logike”, Algebra i logika, 32:5 (1993), 519–536 | MR | Zbl

[3] S. I. Mardaev, “Naimenshie nepodvizhnye tochki v logike Redelya–Leba”, Algebra i logika, 32:6 (1993), 683–689 | MR | Zbl

[4] S. I. Mardaev, “Least fixed points in modal logic”, Trudy mezhdunarodnykh konferentsii po matematicheskoi logike, Novosibirsk, Proceedings of international conferences on mathematical logic, ed. S. S. Roncharova i dr., izd-vo NRU,, Novosibirsk, 2002, 92–103

[5] S. I. Mardaev, “Opredelimost naimenshikh nepodvizhnykh tochek”, Algebra i logika, 41:4 (2002), 429–458 | MR | Zbl

[6] Y. Gurevich, S. Shelah, “Fixed-point extensions of first-order logic”, Ann. Pure Appl. Logic, 32:3 (1986), 265–280 | DOI | MR | Zbl

[7] S. Kreutzer, Proc. 17th IEEE Symp. Log. Comput. Sci. (LICS), , 2002 http://www-mgi.informatik.rwth-aachen.de/kreutzer/publications/lics02.ps

[8] A. Dawar, E. Grädel, S. Kreutzer, Comput. Sci. Log., , Lect. Notes Comput. Sci., 2142, ed. L. Fribourg, Springer-Verlag, Berlin, 2001, 277–291 http://www-mgi.informatik.rwth-aachen.de/kreutzer/publications/csl01.ps) | MR | Zbl

[9] A. Dawar, E. Grädel, S. Kreutzer, “Inflationary fixed points in modal logic”, ACM Trans. Comput. Log. (TOCL), 2002, http://www-mgi.informatik.rwth-aachen.de/kreutzer/publications/tocl.ps) | MR

[10] S. I. Mardaev, “Nepodvizhnye tochki modalnykh skhem”, Algebra i logika, 31:5 (1992), 493–498 | MR | Zbl

[11] R. O. Gandy, “Inductive definitions”, Generalized recursion theory, Stud. Logic Found. Math., 79, eds. J. E. Fenstad, P. G. Hinman, North-Holland Publ. Co., Amsterdam, 1974, 265–299 | MR

[12] K. Segerberg, “Modal logics with linear alternative relations”, Theoria, 36:3 (1970), 301–322 | MR