$\Sigma$-Definability in Hereditarily Finite Superstructures and Pairs of Models
Algebra i logika, Tome 43 (2004) no. 4, pp. 459-481.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of being $\Sigma$-definable for an uncountable model of a $c$-simple theory in hereditarily finite superstructures over models of another $c$-simple theory. A necessary condition is specified in terms of decidable models and the concept of relative indiscernibility introduced in the paper. A criterion is stated for the uncountable model of a $c$-simple theory to be $\Sigma$-definable in superstructures over dense linear orders, and over infinite models of the empty signature. We prove the existence of a $c$-simple theory (of an infinite signature) every uncountable model of which is not $\Sigma$-definable in superstructures over dense linear orders. Also, a criterion is given for a pair of models to be recursively saturated.
Keywords: $\Sigma$-definability, $c$-simple theory, model, hereditarily finite superstructure, linear order.
@article{AL_2004_43_4_a4,
     author = {A. I. Stukachev},
     title = {$\Sigma${-Definability} in {Hereditarily} {Finite} {Superstructures} and {Pairs} of {Models}},
     journal = {Algebra i logika},
     pages = {459--481},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_4_a4/}
}
TY  - JOUR
AU  - A. I. Stukachev
TI  - $\Sigma$-Definability in Hereditarily Finite Superstructures and Pairs of Models
JO  - Algebra i logika
PY  - 2004
SP  - 459
EP  - 481
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_4_a4/
LA  - ru
ID  - AL_2004_43_4_a4
ER  - 
%0 Journal Article
%A A. I. Stukachev
%T $\Sigma$-Definability in Hereditarily Finite Superstructures and Pairs of Models
%J Algebra i logika
%D 2004
%P 459-481
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_4_a4/
%G ru
%F AL_2004_43_4_a4
A. I. Stukachev. $\Sigma$-Definability in Hereditarily Finite Superstructures and Pairs of Models. Algebra i logika, Tome 43 (2004) no. 4, pp. 459-481. http://geodesic.mathdoc.fr/item/AL_2004_43_4_a4/

[1] Yu. L. Ershov, “Opredelimost v nasledstvenno konechnykh nadstroikakh”, Dokl. RAN, 340:1 (1995), 12–14 | MR | Zbl

[2] Yu. L. Ershov, “$\Sigma$-definability of algebraic structures”, Handbook of recursive mathematics, vol. 1, Recursive model theory, Stud. Logic Found. Math., 138, eds. Y. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, Elsevier Science B.V., Amsterdam, 1998, 235–260 | MR | Zbl

[3] Yu. L. Ershov, Opredelimost i vychislimost, Sib. shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[4] J. Barwise, Admissible sets and structures, Springer-Verlag, Berlin, 1975 | MR | Zbl

[5] R. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | Zbl

[6] Dzh. Saks, Teoriya nasyschennykh modelei, Mir, M., 1976 | MR

[7] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR

[8] H. A. Kierstead, J. B. Remmel, “Indiscernibles and decidable models”, J. Symb. Log., 48:1 (1983), 21–32 | DOI | MR | Zbl

[9] H. A. Kierstead, J. B. Remmel, “Degrees of indiscernibles in decidable models”, Trans. Am. Math. Soc., 289:1 (1985), 41–57 | DOI | MR | Zbl

[10] A. Macintyre, D. Marker, “Degrees of recursively saturated models”, Trans. Am. Math. Soc., 282:2 (1984), 539–554 | DOI | MR | Zbl

[11] A. I. Stukachev, “$\Sigma$-dopustimye semeistva nad lineinymi poryadkami”, Algebra i logika, 41:2 (2002), 228–252 | MR | Zbl

[12] A. I. Stukachev, “Ob opredelimosti v dopustimykh mnozhestvakh vida $HF(\mathfrak{M})$”, Problemy teoreticheskoi i prikladnoi matematiki, tr. 33-i region. molodezh. konf., Ekaterinburg, 2002, 47–50

[13] J. P. Ressayre, “Models with compactness properties relative to an admissible language”, Ann. Math. Logic, 11:1 (1977), 31–56 | DOI | MR