The Lattice of Interpretability Types of Cantor Varieties
Algebra i logika, Tome 43 (2004) no. 4, pp. 445-458
Voir la notice de l'article provenant de la source Math-Net.Ru
For integers $1\leqslant m$, a Cantor variety with $m$ basic $n$-ary operations $\omega_i$ and $n$ basic $m$-ary operations $\lambda_k$ is a variety of algebras defined by identities $\lambda_k(\omega_1(\bar x),\ldots,\omega_m(\bar x))=x_k$ and $\omega_i(\lambda_1(\bar y),\ldots ,\lambda_n(\bar y))=y_i$, where $\bar x=(x_1,\ldots,x_n)$ and $\bar y=(y_1,\ldots,y_m)$. We prove that interpretability types of Cantor varieties form a distributive lattice, ${\mathbb C}$, which is dual to the direct product ${\mathbb Z}_1\times{\mathbb Z}_2$ of a lattice, ${\mathbb Z}_1$, of positive integers respecting the natural linear ordering and a lattice, ${\mathbb Z}_2$, of positive integers with divisibility. The lattice ${\mathbb C}$ is an upper subsemilattice of the lattice ${\mathbb L}^{\rm int}$ of all interpretability types of varieties of algebras.
Keywords:
Cantor variety, distributive lattice, interpretability types of varieties, lattice of varieties.
@article{AL_2004_43_4_a3,
author = {D. M. Smirnov},
title = {The {Lattice} of {Interpretability} {Types} of {Cantor} {Varieties}},
journal = {Algebra i logika},
pages = {445--458},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2004_43_4_a3/}
}
D. M. Smirnov. The Lattice of Interpretability Types of Cantor Varieties. Algebra i logika, Tome 43 (2004) no. 4, pp. 445-458. http://geodesic.mathdoc.fr/item/AL_2004_43_4_a3/