The Lattice of Interpretability Types of Cantor Varieties
Algebra i logika, Tome 43 (2004) no. 4, pp. 445-458.

Voir la notice de l'article provenant de la source Math-Net.Ru

For integers $1\leqslant m$, a Cantor variety with $m$ basic $n$-ary operations $\omega_i$ and $n$ basic $m$-ary operations $\lambda_k$ is a variety of algebras defined by identities $\lambda_k(\omega_1(\bar x),\ldots,\omega_m(\bar x))=x_k$ and $\omega_i(\lambda_1(\bar y),\ldots ,\lambda_n(\bar y))=y_i$, where $\bar x=(x_1,\ldots,x_n)$ and $\bar y=(y_1,\ldots,y_m)$. We prove that interpretability types of Cantor varieties form a distributive lattice, ${\mathbb C}$, which is dual to the direct product ${\mathbb Z}_1\times{\mathbb Z}_2$ of a lattice, ${\mathbb Z}_1$, of positive integers respecting the natural linear ordering and a lattice, ${\mathbb Z}_2$, of positive integers with divisibility. The lattice ${\mathbb C}$ is an upper subsemilattice of the lattice ${\mathbb L}^{\rm int}$ of all interpretability types of varieties of algebras.
Keywords: Cantor variety, distributive lattice, interpretability types of varieties, lattice of varieties.
@article{AL_2004_43_4_a3,
     author = {D. M. Smirnov},
     title = {The {Lattice} of {Interpretability} {Types} of {Cantor} {Varieties}},
     journal = {Algebra i logika},
     pages = {445--458},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_4_a3/}
}
TY  - JOUR
AU  - D. M. Smirnov
TI  - The Lattice of Interpretability Types of Cantor Varieties
JO  - Algebra i logika
PY  - 2004
SP  - 445
EP  - 458
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_4_a3/
LA  - ru
ID  - AL_2004_43_4_a3
ER  - 
%0 Journal Article
%A D. M. Smirnov
%T The Lattice of Interpretability Types of Cantor Varieties
%J Algebra i logika
%D 2004
%P 445-458
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_4_a3/
%G ru
%F AL_2004_43_4_a3
D. M. Smirnov. The Lattice of Interpretability Types of Cantor Varieties. Algebra i logika, Tome 43 (2004) no. 4, pp. 445-458. http://geodesic.mathdoc.fr/item/AL_2004_43_4_a3/

[1] B. Jónsson, A. Tarski, “On two properties of free algebras”, Math. Scand., 9:1a (1961), 95–101 | MR | Zbl

[2] O. C. Garcia, W. Taylor, The lattice of interpretability types of varieties, Mem. Am. Math. Soc., 50 (305), Am. Math. Soc., Providence, RI, 1984 | MR

[3] D. M. Smirnov, “O razmernostyakh mnogoobrazii Kantora i Posta”, Algebra i logika, 35:3 (1996), 359–369 | MR | Zbl

[4] G. Birkgof, Teoriya reshetok, Nauka, M., 1984 | MR

[5] W. Taylor, “Characterising Mal'cev conditions”, Alg. Univers., 3:3 (1973), 351–397 | DOI | MR | Zbl

[6] D. M. Smirnov, Mnogoobraziya algebr, Nauka, Novosibirsk, 1992 | MR

[7] S. Swierczkowski, “On isomorphic free algebras”, Fund. Math., 50:1 (1961), 35–44 | MR | Zbl

[8] D. M. Smirnov, “Beskonechnye primalnye algebry i mnogoobraziya Posta”, Algebra i logika, 32:2 (1993), 203–221 | MR | Zbl